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Commentary 

A Rebuttal to Chiropractic Radiologists’ View of the 50-year-old,
Linear-No-Threshold Radiation Risk Model

Paul A Oakley, MSc, DC
Donald D Harrison, PhD, DC, MSE
Deed E Harrison, DC
Jason W Haas, DC

This discussion is in response to a letter-to-the editor in
the form of a ‘Commentary’ by Bussieres, Ammendolia,
Peterson, and Taylor1 concerning our original commen-
tary: ‘On “phantom risks” associated with diagnostic
ionizing radiation: evidence in support of revising radio-
graphy standards and regulations in chiropractic,2 pub-
lished in the December 2005 issue of this journal. 

Bussieres et al.1 have expressed that our original com-
mentary lacked credibility, while they claimed that: 1) we
have a vested financial interest in promoting routine and
follow-up x-rays; 2) we provided a biased and unscientif-
ic evaluation of the evidence; 3) there is “no convincing
evidence that the use of radiography for spinal biome-
chanical assessment (other than for scoliosis) is of any
therapeutic value”; and 4) ‘unnecessary’ x-rays are asso-
ciated with high health care costs.

Ad Hominem Attacks
First, we will address their1 “Ad Hominem” attacks on
us. They referred to our paper as “self serving”, “profes-
sionally irresponsible”, and having a “vested financial in-
terest”. An Ad Hominem attack has no place in a
scientific debate. In fact, the Ad Hominem attack is one
of the fallacies in scientific debates; instead of critiquing
the science, attack the character of the individual.3 Ac-
cording to Stein,3 when an individual resorts to an Ad
Hominem attack, they have lost credibility. Normally, we
would ignore such insults, however, we note only two of
the four authors (Harrisons) have any financial gain from
CBP technique (by seminar attendance) – but how do
doctors, in different States/Provinces/Countries, x-raying
their own patients, transcribe the knowledge gained about
spinal health into a financial benefit for any of our au-
thors? 

Biased and Unscientific Evaluation of the Evidence
Second, Bussieres et al.1 claimed that we presented a bi-

ased and unscientific evaluation of the evidence on can-
cer risks from exposure to ionizing radiation. We believe,
while being brief, we presented the facts. We presented a
review of 7 studies of human exposures to low-level radi-
ation that resulted in health benefits for these popula-
tions.2 So, in support of our previous article, we will
expand on our evaluation of the evidence. For our discus-
sion, we direct the reader to Figure 1 as a visual represen-
tation of the Linear-No-Threshold Model (LNT) and the
Radiation Hormesis Model of cancer risks from exposure
to ionizing radiation.

 

Figure 1 “Linear” indicates the LNT Model, which is a linear 
extrapolation from the high dose (dose-rate) of atomic bombs 
dropped on Japan, drawn linearly down to zero. This model 
assumes that any exposure has a cancer risk, and the greater 
the exposure, the greater the cancer risk. “Hormesis” is the 
quadratic shaped curve (U-shaped curve), where between 
zero and the zero equivalent point (ZEP), there is less risk of 
cancer or a ‘benefit’. However, doses greater than the ZEP 
(a threshold) indicate a near linear increased risk of cancer with 
increasing doses. (adapted from Luckey, 1991 and Hiserodt, 
2005).4,5
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Controversy in the BEIR VII Conclusions 
Bussieres et al.1 fall prey to a typical argument on cancer
risks by citing references that neglect Hormesis evidence.
They1 cited the 2005 BEIR report6 and a few other refer-
ences used in the BEIR report.7–10 We had read parts of
the long BEIR report and noted that it often made its
claims while assuming the LNT model. In fact, what
Bussieres et al.1 failed to mention is that, in 2005, Auren-
go et al.11 compared the Reports by the French Academy
of Sciences and the French Academy of Medicine, both
of which reached the same opposite conclusion to BEIR
VII. 

Aurengo et al.11 found that the BEIR report neglected
hormesis evidence and neglected negative analyses of the
studies that were cited. Also we note that the BEIR Re-
port has not been officially issued yet, (only a prelimi-
nary draft on their web site) and is still subject to change.
In contrast, the unanimous report by the French Academy
of Sciences and National Academy of Medicine (2005)
stated:

“In conclusion, this report doubts the validity of using the
LNT in the evaluation of the carcinogenic risk of low doses
(<100mSv) and even more for very low doses (<10mSv). ...
the use of LNT in the low dose or dose rate range is not con-
sistent with the current radiobiological knowledge; LNT
cannot be used without challenge ... for very low doses
(<10mSv). ... The eventual risks in the dose range of radio-
logical examinations (0.1 to 5 mSv, up to 20mSv for some
examinations) must be estimated taking into account radio-
biological and experimental data. An empirical relationship
which is valid for doses higher than 200 mSv may lead to an
overestimation of risk associated with doses one hundred-
fold lower and this overestimation could discourage patients
from undergoing useful examinations and introduce a bias in
radioprotection measures against very low doses (<10
mSv).”11 

Cohen’s Outline
In preparation for this rebuttal, we contacted one of the
leading authorities on radiation exposure risks, Dr. B. L.
Cohen,12–22 University of Pittsburgh, Pennsylvania, USA.
What follows is the outline that Cohen provided to us:23

1. Problems with the Basis for the Linear-No-Threshold
Theory

2. Direct Experimental Challenges to the Basis for LNT
3. Effects of Low-Level Radiation on Biological Defense

Mechanisms
4. Stimulation of the Immune System
5. Cancer Risks vs Dose in Animal Experiments
6. Cancer Risks vs Dose in Human Experiments

a. Critique of Data Frequently Cited Supportive of
LNT

b. Data Contradictory to LNT

1. Problems with the Basis for LNT
The LNT model is theoretical and simple: A single parti-
cle of radiation hitting a single DNA molecule in a single
cell nucleus of the human body can initiate cancer. There-
fore cancer initiation probability is proportional to the
number of events, which is proportional to the number of
particles of radiation, which is proportional to the dose.
Thus the LNT theory is “the risk is proportional to the
dose”.23 The problem with this simple theory is that other
factors affect cancer risk, i.e., human bodies have biolog-
ical defense mechanisms that prevent the vast majority of
radiation events from becoming a cancer.24 

There are several defense mechanisms: (1) The most
important cause of DNA injury is corrosive chemicals
termed reactive oxygen species (ROS) and low-level radi-
ation has been shown to stimulate the scavenging proc-
esses to eliminate these from cells;25 (2) There is
abundant evidence that low-level radiation stimulates the
immune system, while high levels/doses depress the im-
mune response;26 (3) Radiation can alter cell timing, i.e.,
the time before the next cell division/mitosis and low-lev-
els of radiation increase this time and allow for more pos-
sible DNA repair; (4) Low dose hypersensitivity and
increased radiation radioresistance are affected by low-
level radiation;27 and (5) It is now recognized that tissue
response, whole organ response, and organism response,
rather than just single cellular response, must be consid-
ered.11

There is another obvious failure of the original LNT
model. The theory predicts that the number of initiating
events is roughly proportional to the mass of the animal
being irradiated. However, research has shown that the
cancer risk for a given radiation field is similar for a 30
gram mouse and a 70,000 gram human.26 

Interestingly, validity of the LNT model is based on
double strand breaks (DSB) in DNA molecules. Howev-
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er, Feinendegen26 estimated that ROS causes about 0.1
DSB per cell per day, whereas 100 mSv (10 rem) of radi-
ation causes about 4 DSB per cell. Using this informa-
tion, a 100 mSv dose of radiation would increase the
lifetime risk of cancer (28,000 days x 0.1 DSB/day) by
only about 0.14% (4/28,000), but the LNT model predicts
7 times that much at 1%.

2. Direct Experimental Challenges to the Basis for LNT
A direct failure of the basis for the LNT model is derived
from microarray studies, which determine what genes are
up-regulated and what genes are down-regulated by radi-
ation. It was discovered that generally different sets of
genes are affected by low-level radiation as compared to
high-level doses. In 2003, Yin et al.28 used doses of 0.1
Sv and 2.0 Sv applied to mouse brain. The 0.1 Sv dose
induced expression of protective and repair genes, while
the 2.0 Sv dose did not.

A similar study on human fibroblast cells was conduct-
ed in 2002 by Golder-Novoselsky et al.29 Using doses of
0.02 Sv and 0.5 Sv, they discovered that the 0.02 Sv dose
induced stress response genes, while the 0.5 Sv dose did
not. Several other microarray studies have demonstrated
that high radiation doses, which serve as the “calibration”
for LNT, are not equivalent to adding an accumulation of
low radiation doses.30 

In fact, in 2001, Tanooka31 studied tumor induction by
irradiating the skin of mice throughout their lifetimes.
For irradiation rates of 1.5 Gy/week, 2.2 Gy/week, and 3
Gy/week, the percentage of mice that developed tumors
was 0%, 35%, and 100%, respectively. This31 data dem-
onstrated a clear threshold response directly in conflict
with predictions of the LNT model.

3. Effects of Low-Level Radiation on 
Biological Defense Mechanisms
In 1994, the United Nations Scientific Committee on Ef-
fects of Atomic Radiation (UNSCEAR) report32 defined
“adaptive response” as a type of biological defense mech-
anism that is characterized by sequent protection to
stresses after an initial exposure of a stress (like radia-
tion) to a cell. For radiation experiments, this is studied
by exposing cells to low-doses to prime the adaptive re-
sponse and then later exposing it to a high radiation
“challenge dose” to see what happens. There have been
several experiments in this topic,33–42 and we report on

just a few of these.33–35

In 1990, Cai and Liu33 exposed mouse cells in 2 differ-
ent ways: (1) a high dose of 65 cGy (65 rad), and (2) a
low-dose of 0.2 cGy before the high-dose of 65 cGy. The
number of chromosome aberrations reduced in the sec-
ond group compared to the first group was 38% bone
marrow cell aberrations reduced to 19.5% and 12.6%
spermatocyte aberrations reduced to 8.4 %.

In 1992, Shadley and Dai34 irradiated human lym-
phocyte cells, some with high doses and some with a
low-dose a few hours before a high-dose. The number of
chromosome aberrations caused by a high-dose was sub-
stantially reduced when a preliminary low-dose was giv-
en first.

In 2001, Ghiassi-nejad et al.35 studied this effect in hu-
mans. In Iran, residents of a high background radiation
area (1 cGy/year) were compared to residents in a normal
background radiation area (0.1 cGy/yea). When lym-
phocytes, taken from these groups, were exposed to 1.5
Gy (150 rad), the percentages of aberrations were 0.098
for the high background area versus 0.176 (about double)
for the low background area. The radiation in the high
background area protected its residents from the 1.5 Gy
dose.

4. Stimulation of the Immune System
The effects of low-level radiation on the immune system
are important since the immune system is responsible for
destroying cells with DNA damage. Low doses of radia-
tion exposure cause stimulation of the immune system
while high doses reduce immune activity.43–45

Contrary to expectations from the basic assumption of
the LNT model (cancer risks depends only on total dose),
effects on the immune system are quite different for the
same total dose given at a low dose rate (summation of
several small doses) versus one high dose rate, i.e., at low
dose rates the immune system is stimulated, while at high
doses, cancers are caused.46–50

5. Cancer Risks vs Dose (Animal Experiments)
To test the validity of the LNT model, there have been
numerous direct experiments of cancer risk versus dose,
with animals exposed to various radiation doses. In 1979,
Ullrich and Storer51 reported that exposed animals lived
up to 40% longer than controls. In a series of animal
studies in the 1950s and 1960s, review articles by Finkel
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and Biskis52–54 reported, with high statistical signifi-
cance, that the LNT model over-estimated the cancer
risks from low-level radiation exposures and they report-
ed a threshold not a linear response.

In a 2001 review of over 100 animal radiation experi-
ments, Duport55 reported on studies involving over
85,000 exposed animals and 45,000 controls, with a total
of 60,000 cancers in exposed animals and 12,000 cancers
in control animals. In cases where cancers were observed
in controls receiving low doses, either no effect or an ap-
parent reduction in cancer risk was observed in 40% of
the data sets for neutron exposure, 50% of the data sets
for x-ray exposure, 53% of the data sets for gamma rays
exposure, and 61% of the data sets for alpha particles ex-
posure. 

6. Cancer Risks vs Dose (Human Experiments): 
A. Critique of Data Frequently Cited in Support of LNT
The principle data cited and used to support the LNT
model are those for solid tumors (all cancers except
leukemia) in the survivors of the Japanese atomic bomb
explosions. Pierce’s 1996 paper56 reported data from
1945–1990. By ignoring the error bars, supporters of the
LNT model claim that the data suggests an approximate
linear relationship with intercept near zero. But there is
no data that gives statistical significant indication of ex-
cess cancers for radiation doses below 25 cSv.57 Leuke-
mia data from Japanese A-bomb survivors strongly
suggest a threshold above 20 cSv and the contradiction to
the LNT model is recognized by the author.57 In 1998,
Cohen58 used the three lowest dose points in the Japanese
data (0-20 cSv) to show that the slope of the dose-re-
sponse curve has a 20% probability of being negative
(i.e., Hormesis = risk decreasing with increasing dose).

The next often cited evidence, by supporters of the
LNT model, is the International Association for Research
on Cancer (IARC) studies on monitored radiation work-
ers. In 1995, Cardis et al.59 reported on 95,673 monitored
radiation workers in 3 countries and in a follow-up study
by the same authors in 2005,60 they reported on 407,000
monitored workers in 154 facilities in 15 countries. In the
first study, for all cancers except leukemia (there were
3,830 deaths, but no excess over the number expected
from the general population), the risks were reported as –
0.07/Sv with 90% confidence limits of (–04,+0.3), i.e.,
there is NO support for LNT from this data! However, for

leukemia (146 deaths), they reported a positive correla-
tion, but their data had no indication of any excess can-
cers (risks) below 40 cSv. Most importantly, these
authors discarded 3/7 of their data points when observed/
expected was less than unity. In fact, Cohen23 noted that
(1) no information on such confounding factors as smok-
ing was given, (2) if data from just one of the 15 coun-
tries was eliminated (Canada), the appearing excess is no
longer statistically different from zero, (3) the authors did
not consider non-occupational exposure (natural back-
ground radiation) and if they had, they would have no-
ticed that their excess “signal” was much smaller than the
“noise” from background radiation.

Often critics of Radiation Hormesis use the “Healthy
Worker effect” to discredit what is found. When studying
mortality rates for employed workers compared to the
general population, it is found that workers have lower
mortality rates. In Sweden in 1999, Gridley61 compared
545,000 employed women to 1,600,000 unemployed
women. He reported that the cancer incidence rate was
slightly higher for employed women (1.05 ± 0.01). This
eliminated the claims of the “Healthy Worker effect”. For
an example of improper use of this effect, in 2005
Rogel62 studied 22,000 monitored workers in the French
nuclear power industry. The cancer mortality rate was
only 58% of the general French population. Instead of
concluding a Hormesis effect, Rogel claimed that this
large difference was due to the “healthy worker effect”.62

B. Data Contradictory to LNT
There is much data contradictory to the LNT model.
There are multiple human studies which show a radiation
Hormesis effect.16,22,64–72

For breast cancer in Canadian women, Miller63 report-
ed a decrease risk with increasing dose up to 25 cSV.
Howe64 (for lung cancer in Canadian women) and
Davis65 (for 10,000 people in Massachusetts) separately
reported a decrease in cancers in the low-dose region up
to 100 cSv. There is a difference between lung cancer
rates in Japanese A-bomb survivors and the data from
Howe and Davis: the Japanese survivors show a much
higher risk at all doses. This indicates that one must not
accept A-bomb survivor data (one large dose) to predict
risks from low-dose rates where low-level doses are
summed. It is known that risks from summing low doses
(such as spinal radiography use in chiropractic) does not
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equal the risks from one large dose (Tubiana).30

Kostyuchenko66 reported on a follow-up of 7,852 vil-
lagers exposed in the 1957 radioactive storage facility ex-
plosion in Russia. The cancer mortality rate was much
lower in these villagers than in unexposed villagers in the
same area supporting a hormetic effect. However, the ex-
posure of the workers directly at the facility was quite
high in one dose and these workers were found to have an
increase in cancers indicating a dose threshold for in-
crease cancers (Koshurnikova 2002).67 

In 1997, Sakamoto68 reported on radiation treatments
in non-Hodgkin’s lymphoma. Patient groups were ran-
domly separated into radiation treatment and non-radia-
tion treatment. After 9 years, 50% of the control group
died but only 16% of the irradiated group died.

The conclusion from Cohen’s outline23 is that the LNT
theory fails badly in the low dose region. It grossly over-
estimates the cancer risks from low-level radiation. The
cancer risk from the vast majority of normally encoun-
tered radiation exposures (background radiation, medical
x-rays, etc.) is much lower than estimates given by sup-
porters of the LNT model, and it may well be zero or
even negative.

Critique of Bussieres et al.1 Cancer Risk References
As previously discussed, Aurengo11 reported on two
groups who came to the opposite conclusions compared
to the 2005 BEIR report.6

In their risks argument, Bussieres et al.1 passionately
present (their table 1) the number of estimated cancer
deaths per year as calculated from known x-ray usage in
the Berrington de Gonzalez study.8 This study8 relied
solely on the LNT model and has been critcized by many
for several reasons. First, as several critics noted73–76 and
for which the authors8 admitted in their reply,77 they
failed to weigh the benefits of diagnostic x-rays in their
study, which only guarantees an overestimate of death
calculations. Another criticism was their assumption of
the LNT to make their cancer death estimations. Tubiana
et al.74 pointed out the “speculative nature” of the LNT
hypothesis, and along with Simmons,78 noted that the
LNT is only compatible with exposures greater than
200mSv ( significantly more radiation than any medical
x-rays). 

Another criticism is that the Japanese survival data has
significant limitations to extrapolate its use for x-ray risk

estimates from � rays. The Japanese exposure was a one
time high dose, which is entirely different from accumu-
lated small dose rates. Herzog and Rieger73 note that this
data will overestimate cancer risk because the Japanese
were exposed to � rays from bombs, a different energy
spectrum than x-rays, but also the additional exposures of
� radiation, radionuclides emitting �, and high-energy �
radiation from contaminated water, food, and dust.

Yet another criticism of the study was that there was no
mention of the complexity and effectiveness of the hu-
man cell’s defenses against ionizing radiation. Tubiana et
al.74 noted there are hundreds of enzymes devoted to pro-
tect a cell from these effects and that “there is no single
defense mechanism but a variety,… an adaptive effect ex-
ists and a hormetic effect has even been seen in more than
half of experimental studies after low or moderate dos-
es.”79–80 “Extrapolation from high doses to low doses
with LNT is unlikely to be able to assess the risks accu-
rately.”74 

For Bussieres et al.1 to use this study as ‘evidence’ for
rationale for x-ray guidelines is dubious. In fact, without
mentioning the scientific peer concerns surrounding the
study,73–76,78 (it is readily observed on pub-med that a
number of letters to the editor were published) we can
only conclude that they1 are the ones presenting a ‘bi-
ased’ evaluation of the evidence. 

No Convincing Evidence for the Use of 
Radiography for Spinal Assessment 
Next, we arrive at Bussieres et al.1 third complaint about
our original article. Using 3 references, (Ammendolia et
al.,81 Mootz et al.,82 Haas et al.83) Bussieres et al.1 state x-
rays are not useful due to lack of clinical relevance. The
Ammendolia article81 is a questionnaire study with a fo-
cused group interview about clinicians’ opinions and
practices regarding acute low back pain only. This paper
disregarded an entire body of evidence in opposition to
the papers’ conclusions that was not addressed.84 

Further, as in their commentary at hand,1 medical
‘diagnostic red flag only’ references are used for a
chiropractic argument against x-ray usage. That is, chiro-
practic doctors differ fundamentally in assessment,
diagnosis, and treatment than their medical counterparts.
Therefore, Medical references apply to the profession of
drugs and surgery, NOT chiropractic, which uses physical
forces applied to spines. Not only is the spinal structure
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intricately examined by chiropractors but as Mootz et
al.82 states: “identifying contraindications to ... manipula-
tion, however, is a purpose that belongs only to practi-
tioners of manual therapies, especially DCs.” 

Bussieres et al.1 commit a common error by citing
Haas et al.83 without acknowledging that this is the mid-
dle paper of a 3-part debate.85.86 The Haas reference83 has
been clearly rebutted.86 

The Mootz et al.82 review is a decade old, and even
they stated “using plain film imaging, single studies re-
sult in relatively insignificant radiation dosages and ex-
pense.” At that time, (1997) Mootz et al.82 suggested that
changes in patient misalignment had yet to be determined
to impact clinical progress. Despite even being arguable
at that time, in the following decade, there has been a va-
riety of good quality, biomechanical and outcome studies
defining this relationship published by the CBP group.87–

96 In fact, in the recent ICA X-ray Guidelines (PCCRP),
there are hundreds of Chiropractic outcome studies cit-
ed.97 

Furthermore, Bussieres et al.1 failed to acknowledge
the recent randomized trial by Khorshid et al.98 where a
clinically and statistically significant improvement in au-
tistic children treated with upper cervical technique (us-
ing x-rays) was found compared to those treated with
standard full spine technique (no x-rays).

Previous authors have stated that guidelines for chiro-
practic clinicians’ and manual therapists’ utilization of
x-ray should be different from those of a medical prac-
titioner who does not use spinal adjustments/forces and
rehabilitation procedures as treatment for spinal subluxa-
tions.99–101 In studies specifically considering the role of
chiropractic treatment interventions, spinal radiographic
views indicate that between 66%–91% of patients can
have significant abnormalities affecting treatment:102–104

33% can have relative contraindications and 14% can
have absolute contraindications to certain types of chiro-
practic adjustment procedures.104 

Radiography Is Not Cost Effective
Bussieres et al.1 mention that patients receiving radiogra-
phy are more satisfied with care, but then discard this
finding in favor of a ‘cost reducing model of health care’.
We feel it is important to present this information in
proper context. 

For example, in a randomized trial comparing the in-

tervention of lumbar radiography to no radiography in
patients with at least 6 weeks duration of low back pain,
Kendrick et al.105,106 found no differences in outcomes
between the groups. Problematically, the intervention
used for treatment did not specifically address any struc-
tural spinal displacements as chiropractic clinicians
would readily apply. Importantly, patients receiving radi-
ography were more satisfied with the care they re-
ceived.105,106 Furthermore, patients allocated to a
preference group, where the decision to receive lumbar
radiography was made by them, achieved clinically sig-
nificant improved outcomes compared to those rand-
omized to a non-radiography or a radiography group.106 

Thus, undercutting patient choice by ‘red flag’ only
guidelines, as Bussieres et al.1 would have us do for
chiropractic practice, limits a patient’s right to choose and
may impair or slow recovery. However, just as important-
ly, we caution Bussieres et al.1 for applying results from
clinical studies with pharmacology and PT treatments to
Chiropractic situations where the treatments are vastly
different (physical forces applied to spinal structures).

While cost-effectiveness analysis may favor limited x-
ray utilization in a volume 3rd party payer scenario
where maximization of profits is the goal,107 in the indi-
vidual patient, case specific circumstances can lead to a
different conclusion. It is our perspective that, in chiro-
practic clinical practice, the needs of the one outweigh
the needs of the many or the managed care organization;
our duty is to identify the spinal problem of the individu-
al and develop solution strategies where possible.

Lastly, there is an expectation by the consumer to have
a thorough spinal evaluation when seeing a DC for a
health problem and this includes an x-ray evaluation for
alignment of the spine and the state of health of the
spine.108 

Conclusion
In summary, Bussieres et al.’s1 Ad Hominem attacks on
us and their main arguments against routine use of radi-
ography in common practice, radiation risks, and lack of
clinical usefulness are without scientific support. In fact,
Luckey stated, “for every thousand cancer mortalities
predicted by the linear models (LNT), there will be a
thousand decreased cancer mortalities and ten thousand
persons with improved quality of life.” 4 
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