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Abstract
Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic
scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data
between higher and lower body mass index subsets. Unexpected findings for each of skeletal
maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS
pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence
including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal
biology relating the sympathetic nervous system to bone formation/resorption and bone growth;
(3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as
satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and
(4) central leptin resistance in obesity and possibly in healthy females. The new theory states that
AIS in girls results from developmental disharmony expressed in spine and trunk between
autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous
theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to
circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing
intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an
adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous
system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-
hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative
AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic
(growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal
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effects and contributes to curve progression, a concept with therapeutic implications. In the
somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails
to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical
factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the
thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in
spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc
degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined.
Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation,
medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human
evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in
trunk growth, each acquired in evolution and unique to humans.

Introduction
The autonomic nervous system through its hypothalamic
neuroendocrine control of puberty, menarche and skele-
tal growth [1-3] contributes importantly to the pathogen-
esis of AIS [4-6]. Melatonin [7-13] and its signaling
pathway dysfunction [14-20] and platelet-calmodulin
dysfunction [21,22] detected in AIS subjects involve the
autonomic nervous system. In AIS girls, autonomic nerv-
ous system activity was reported to be higher than con-
trols [23].

The double neuro-osseous theory for AIS pathogenesis in girls
postulates developmental disharmony between somatic
[24] and autonomic [25,26] nervous systems [27-29]
expressed in the spine and trunk and exaggerated by hor-
mones producing systemic skeletal overgrowth (preoper-
ative girls) (Figure 1) [30-45]. The theory predicates AIS
pathogenesis in girls on dysfunction in one or both of two
putative normal mechanisms involved in trunk growth,
each acquired in evolution and unique to humans,
namely:

Double neuro-osseous theory for the pathogenesis of AIS in girlsFigure 1
Double neuro-osseous theory for the pathogenesis of AIS in girls. Disharmony in spine and trunk between the two nerv-
ous systems, autonomic (leptin-hypothalamic-sympathetic nervous system - LHS - concept) and somatic (escalator concept). The 
drawing of the girl shows three extraspinal sites where left-right skeletal length asymmetries have been detected in AIS sub-
jects - ribs [30,31], upper arms [32] and iliac height [33,34]; the latter two asymmetries correlate significantly with adjacent spi-
nal curve severity suggesting the presence of vertebral growth plate asymmetries [32,34-36]. Asymmetries are also found in 
tibial lengths [34,37], femoral anteversion [38,39], femoro-tibial correlations [40,41] but not tibial torsion [39,42]. There is 
some evidence suggesting a "primary" vertebral growth plate disorder in AIS [43,44] but this is controversial [45].
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(1) Physiological trunk width skeletal growth driven hor-
monally and supplemented by the sympathetic nerv-
ous system acting symmetrically [25,26,46-50].

(2) Physiological trunk postural mechanisms of the somatic
nervous system adapting normally to the growing and
biomechanically changing skeletal framework
[24,51,52].

There is preliminary evidence suggesting that the hypoth-
alamus of some normal juvenile girls, but not boys, func-
tions with central leptin resistance of the somatotropic (growth
hormone/IGF) axis. This mechanism may limit the energy
invested in female skeletal growth thereby conserving
energy for reproductive development [50]. AIS in girls is
viewed here as commonly resulting from increased central
leptin sensitivity of hypothalamic sympathetic functions
and, in some girls, of the somatotropic (growth hormone/
IGF) neuroendocrine axis.

These concepts provide an evolutionary and biological
perspective [53] of energy homeostasis (bioenergetics)
[54], particularly involving white adipose tissue storing
excess energy as triglycerides, from which the double
neuro-osseous theory is formulated. At the molecular
level, disharmony between genes is established [55]. Gene
variants that may impact the biology of AIS pathogenesis
[56] are considered here in relation to body mass index
(BMI), timing of puberty, leptin, leptin-receptor defi-
ciency, changes in hypothalamic resistance/sensitivity to
leptin, some hormones thought to be related to AIS
pathogenesis, and certain genetically-modified mice.

The double neuro-osseous theory accommodates evidence
that AIS may not be a single condition [51,57-65]. This it
explains by different relative contributions to the trunk
deformity by the autonomic (sympathetic nervous system
and hormone effects) and somatic nervous systems (pos-
tural mechanisms), which can vary between subjects.

The aims of this paper are to:

• outline some anthropometric findings for AIS girls
not explained by prevailing theories of pathogenesis;

• provide a novel theoretical framework for AIS patho-
genesis in girls to explain the findings and connect
knowledge from several biological fields;

• suggest tests of the theory including endocrine stud-
ies;

• focus on therapeutic implications and some possible
manipulatable causes;

• consider an evolutionary perspective [53] for the
pathogenesis of AIS in girls stemming from female fat
accumulation in puberty; and

• foster new thinking and research to improve causal
knowledge of AIS pathogenesis.

Background
General comments
Most experts agree that the causes of adolescent idiopathic
scoliosis (AIS) are multifactorial with no generally
accepted theory of pathogenesis (Appendix 1)
[14,51,57,58,66-111]. This reflects shortcomings in our
understanding of the complex biological and biomechan-
ical multifactorial processes involved in AIS pathogenesis
which needs innovative thinking [73], to which we add
new findings not explained by prevailing theories. One
recent review suggests that genetics and the unique
mechanics of the fully upright human spine play a deci-
sive role in AIS pathogenesis [75]. A genome-wide associ-
ation study revealed 30 markers identified as the most
useful prognostically [56].

Biomechanical spinal growth modulation
A commonly held pathogenetic theory is that initiating
changes in the spine of unknown origin lead to biome-
chanical spinal growth modulation causing curve progres-
sion [80-82,107]. Brace treatment is based on this view of
pathogenesis.

Neurological abnormalities
Studies over many years in AIS subjects have shown
abnormalities of visual, vestibular, proprioceptive and
postural control [67,69,70,94-96,99-104] involving the
brain stem [69,95,97-99], cerebral hemispheres and cor-
pus callosum [69,95,104,111-115], though not without
controversy. Lowe et al [67] suggested that the pathogen-
esis of adolescent idiopathic scoliosis (AIS) results from a
primary pathology in the hind brain causing a defect of
central control, or processing in the central nervous sys-
tem (CNS) that affects a normal growing spine [116].
Neurological abnormalities with AIS have been explained
by four fairly comprehensive concepts for pathogenesis:

(1) visuo-spatial perceptual impairment producing a motor
control problem [104];

(2) body-spatial orientation concept [69];

(3) neurodevelopmental concept [105,106]; and

(4) sensory integration disorder [102].

Abnormal asymmetries of brain structure and function are
found in AIS girls for each of cerebral hemispheres [112-
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115], dichotic listening [112], brain stem [97-99] and, in
preliminary research for left thoracic AIS, on MR brain
scans, reduced white matter density in the left internal
capsule and corpus callosum [114,115].

Origins of the double neuro-osseous theory - the escalator 
concept
Summarizing concepts of AIS pathogenesis in 2008 [51],
we suggested a novel neuro-osseous escalator concept for AIS
in girls (Figures 1, 2 and 3). This involves interaction
between the growing skeleton and postural mechanisms
of the maturing somatic nervous system. The dependence
of AIS progression on growth is attributed not to
growth\velocity, but to rapid skeletal enlargement hormo-
nally-induced, producing skeletal sizes for age beyond the
capacity of postural mechanisms of the somatic nervous sys-
tem to control the initiating deformity.

Origins of the double neuro-osseous theory - the LHS 
concept
Later in 2008, from analyses of anthropometric data of
adolescent girls - normal, screened and preoperative, we
reported that relatively higher and lower subsets of body
mass index (BMI) reveal different features of skeletal mat-
uration [46,47,117-119] and asymmeties of spinal
deformity and upper arm lengths [46,120,121] (Figure 1).
Subsequently, skeletal overgrowth patterns for age were
found in preoperative AIS girls compared with normal
girls when analysed separately by higher and lower BMI
subsets [29,122]. Then, in normal girls and boys, an
excess of severe back humps was found to be associated
with lower BMI subsets [123-125]. These and other findings
were not explained by any of the theories surveyed
(Appendix 1, items 1-15). A more comprehensive hypoth-
esis for AIS pathogenesis in girls was needed incorporat-
ing energy homeostasis (bioenergetics) and the
hypothalamus in a disorder presenting as abnormalities
of trunk growth with axial and appendicular skeletal
asymmetries and systemic skeletal features in preoperative
girls. The components included in the new formulation
are white adipose tissue, leptin, hypothalamus and sympathetic
nervous system (LHS concept). Together with the escalator

concept, they form the double neuro-osseous theory (Figure
1). It has common ground with the thoracospinal concept
[59-63]. These findings for AIS girls and the severe trunk
asymmetry of healthy adolescents [123-125] are consist-
ent with the hypothesis that the control mechanisms of
bioenergetics have relevance to the etiopathogenesis of
such shape deformities/distortions.

Scientific Basis of the Escalator Concept
The central nervous system and the changes of the human 
frame during development and growth
Sporns and Edelman [126] wrote:

"There is overwhelming evidence that the emergence of coordi-
nated movements is intimately tied to both the growth of mus-
culoskeletal system and to the development of brain. The neural
development and learning cannot be considered outside of their
biomechanical context. A key theoretical issue is how the
changes in brain circuitry controlling muscles and joints
become matched to simultaneously occurring developmental
changes at the periphery."

CNS body schema ('body-in-the-brain')
The CNS body schema in adults is defined as a ".....system
of sensory-motor processes that continually regulate posture and
movement - processes that function without reflective awareness
or the necessity of perpetual monitoring." [127]. This control
involves the posterior parietal cortex which participates in
the dynamic representation of the body schema integrated
with other cortical areas [127-130].

SOMATIC NERVOUS SYSTEM - the escalator 
concept
Normal adolescent girls
We postulate that during normal growth and maturation,
a physiological balance is continuously renewed between
two synchronous polarized processes we term neuro-
osseous timing of maturation (NOTOM) escalators (Figure 2)
[24,51,111], namely:

NormalityFigure 2
Normality. Osseous escalator and neural escalator (brain 
and CNS body schema) [24,51].

AIS pathogenesisFigure 3
AIS pathogenesis. Abnormal neuro-osseous escalators as 
applied to the spine [24,51].
Page 4 of 40
(page number not for citation purposes)



Scoliosis 2009, 4:24 http://www.scoliosisjournal.com/content/4/1/24
(1) Osseous escalator. Increasing skeletal size, changing
skeletal shape and relative mass of the different body
segments which, through posture and motion of the
body by producing developmental biomechanical and
kinematic changes at the periphery, create develop-
mentally-altering proprioceptive and visuo-spatial
inputs to the neural escalator in the brain.

(2) Neural escalator and postural control. The brain and
CNS body schema are recalibrated as they continuously
adjust to skeletal enlargement, shape and relative mass
changes to enable them to coordinate motor actions.
The posterior parietal cortex (Area 7) in human clinical
and experimental studies has been shown to partici-
pate in the dynamic representation of the CNS body
schema (Figure 2) [127-130]. Leptin functionally
enhances NMDA receptors which are critically
involved in most models of learning and memory
[131,132]. Increased circulating leptin levels may
explain the reduced grey matter of certain brain areas
in obese subjects [133].

The term escalators are applicable only during growth.
Muscles are not included in this terminology because they
do not primarily drive skeletal growth, but have key roles
in sensory and motor function and contribute to segmen-
tal masses. Similar mechanisms are being evaluated in
robotics and specifically the learning in, and from, brain-
based devices [134].

Girls with AIS
Figures 1 and 3 provide an outline of the escalator concept
for AIS pathogenesis in girls. Putative abnormalities of the
two polarized components of the escalators - with asyn-
chrony and asymmetry(ies) - provide the mechanisms of
the escalator concept for AIS pathogenesis before and dur-
ing the curve acceleration phase [5] in:

(1) spine growing rapidly with asymmetry(ies), and

(2) brain and CNS body schema with -

a) postural maturational delay, and/or

b) brain asymmetry(ies) [113-115].

Postural maturational delay in the CNS may be relative to
earlier skeletal maturation [135-141], or absolute arising
from an abnormality in afferent [100-103,142-145], cen-
tral [104,113], or motor mechanisms [104,146]. A study
of stroke subjects suggests that in axial postural control,
the right hemisphere undertakes higher-order spatial
processing than the left hemisphere [[147], see [148]].

The fate of early AIS - to progress, become static or resolve
(rarely) according to the double neuro-osseous theory gener-
ally depends on the relative contribution and outcome of
the disharmony (Figure 1) between:

a) vertebral growth plate asymmetries in up to three
dimensions arising wholly or in part from dysfunction
in the autonomic nervous system [25-29];

b) postural control, with or without asymmetries, of a
rapidly enlarging and actively moving [52,71,149]
adolescent spine; and

c) postural maturity (see Discussion, Explanations for
undisputed facts about AIS, (2) Predilection for females
b)).

Postural scoliosis in melatonin-deficient mice
Bipedal mice and the protection by melatonin. Machida et al
[150] suggested that the scoliosis development in bipedal
melatonin-deficient mice and the protection from scolio-
sis by restoring melatonin levels, are crucial influences for
a postural mechanism and bipedalism in scoliosis devel-
opment. Deficiency of osteopontin or CD44 receptor also
protect transgenic melatonin-deficient C57Bl/6J mice
from scoliosis [19,20]. Later, we examine whether the sco-
liosis of these three mouse models may be markers of
stress reactions involving the hypothalamus rather than
crucial influences for scoliosis development (see Scientific
basis of leptin-hypothalamic-sympathetic nervous system
(LHS) concept, items 11 & 12).

Some Observations on Skeletal Maturation 
Relating to AIS not Explained by Pathogenetic 
Theories (Appendix 1, Items 1-15)
Prescoliotics and early skeletal maturation of AIS subjects
Little discussed features of AIS pathogenesis are:

• Prescoliotics of both sexes show body height, sitting
height, and growth of sitting height greater than in
non-scoliotic children [135,136].

• Early radiological maturation at 11-12 years of age in
AIS subjects [137].

• Early adolescent skeletal growth attained for age by
AIS girls [38,39,41,121,135-141]. In the preoperative
AIS girls of the relatively higher BMI subset, all the
skeletal parameters we measured when plotted as
standard deviation scores against age, showed nega-
tive regressions - several statistically significant, but
not for the lower BMI subset of preoperative AIS girls
(unpublished observations).
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Together, these observations suggest that, collectively, AIS
girls have a growth pattern different from normal, involv-
ing growth factors connected to the disease [137,151],
confirmed in subsequent research [64,65,89,90,152].

Extra-spinal skeletal length asymmetries detected with AIS
Periapical ribs longer on the concavity of right thoracic
AIS in elderly scoliosis cadavers were found [30] and given
pathogenetic significance, but the finding is controversial
[31,63]. In thoracic idiopathic scoliosis, upper arm length
asymmetry (relatively longer on convexity) is significantly
associated with each of apical vertebral rotation (AVR)
and Cobb angle [32]. Also in scoliosis subjects but with
lower spine scoliosis (thoracolumbar and lumbar), iliac
height asymmetry (relatively taller on concavity) is associ-
ated with Cobb angle and apical vertebral rotation [34],
confirming an observation for subjects with lumbar scol-
iosis [33].

It is unknown whether these asymmetries of upper arm,
iliac height and also femoral anteversion [38,39] are
pathogenetically-related to any local asymmetry in the AIS
spine. We speculate that they are [24,25,32,34-
37,40,41,105,106,120,121]. In this connection we out-
lined evidence supporting a common pathogenesis of
upper arm length asymmetry and thoracic AIS spinal
deformity [32]. In a similar way that the extraspinal gen-
eral skeletal overgrowth for age in AIS girls is associated
with the relative anterior spinal overgrowth (RASO)
[64,65,89,90] giving it pathogenetic significance, we view
the abnormal asymmetry of paired bones as sentinels of
vertebral and/or rib growth plate asymmetries and having
pathogenetic significance. There is some evidence of a pri-
mary vertebral growth plate disorder in AIS (Figure 1)
[43,44,65,90]. Extra-spinal skeletal length asymmetry is
also found in ilio-femoral lengths [35]. More such asym-
metries need to be sought in other bilateral bones of AIS
girls - sacral alae [153-155], clavicles and scapulae.

Body Mass Index (BMI) Relating to AIS and 
Causal Genes
BMI is usually expressed as weight in kg/height in m2.
Standards are available for the UK in The 'Healthy Living'
Social Market Initiative [156]. BMI does not distinguish
between fat and muscle mass. The balance between energy
intake and output determining BMI is largely controlled
by powerful unconscious mechanisms within the auto-
nomic nervous system (see Scientific basis of leptin-
hypothalamic-sympathetic nervous system (LHS) con-
cept, item 3).

BMI and AIS
In girls with AIS and young adults with scoliosis, lower
body mass index [157-165] has been found by most but
not by all workers [46,135,166,167] These findings have

implications for body development, abnormal spinal
development, or nutrition of patients with AIS [165].
There is some evidence of disordered eating behavior
[159,168,169], but the low body-mass index of girls with
AIS is said not to be the result of the eating disorder [168].

Overweight AIS patients
There is a trend towards increasing numbers of adoles-
cents with AIS in the overweight category [170,171]. The
hypothesis that increased BMI can influence scoliosis
presentation was tested in 427 adolescents with idio-
pathic scoliosis [170]. Female subjects who presented
with larger curves (>50 degrees) were older and had a
greater BMI than those with curves less than 50 degrees (p
= 0.0557). Possible curve detection difficulties, endocrine
factors and an earlier puberty with increased fat mass were
suggested for the association of the larger curves with
obesity.

Fat mass related to bone mass and genetic markers in 
normal children
In humans, common variants at only two loci, FTO and
MC4R (melanocortin-4 receptor) have been reproducibly
associated with body mass index (BMI) [172,173]. Muta-
tions of MC4R are the leading cause of severe childhood-
onset obesity [172]. A meta-analysis of 15 genome-wide
association studies for BMI identified six additional loci,
including SH2B1 [173]. Several of the likely causal genes
are expressed, or known to act in the central nervous sys-
tem [172-174]. Different versions of the human gene FTO
strongly correlate with BMI [174]; the FTO gene with sig-
nificant polymorphic variation has been identified in sev-
eral papers as a candidate gene predisposing to obesity. In
rats, fto is significantly up-regulated (41%) after food dep-
rivation [174]. In humans, fat mass, and genetic markers
for obesity genes MC4R and FTO, are strongly related to
bone mineral content, total body and regional, measured
by DXA [175].

SH2B1 is a strong prior candidate for regulating body
weight; it is implicated in leptin signaling; Sh2b1-null
mice are obese; and the evidence suggests that the effects
of this gene on obesity are mediated through the central
nervous system [173] (see Leptin, hypothalamus and AIS).

Overall, these findings support the view that fat mass is on
the causal pathway for bone mass in normal children
[175].

Fto gene in mice
In mice, loss of the Fto gene leads to postnatal growth
retardation, reduction of adipose tissue and serum leptin,
increased energy expenditure, enhanced circulating levels
of adrenaline and noradrenaline; these changes are attrib-
uted to sympathetic system activation (sympathoactiva-
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tion) controlling energy expenditure through
mitochondria and fatty acids/triglycerides [176,177]. In
Fto-deficient mice the sympathoactivation associated with
decreased circulating leptin levels is similar to the hypoth-
alamic up-regulation and sympathoactivation we postu-
late for AIS girls, but without the skeletal overgrowth for
age (see Autonomic nervous system - leptin-hypotha-
lamic-sympathetic nervous system (LHS)-driven mecha-
nism in health and LHS concept in AIS).

Relation of relatively higher and lower BMIs to skeletal 
sizes and asymmetries in AIS girls
Most previous research on AIS has evaluated BMI as a sole
parameter, or in relation to a few skeletal features
[163,164,167]. The genetic aspects of BMI for AIS have
not been reported but it may be difficult in such research
to disentangle the contributions of lower BMI from that of
the AIS.

Our recent findings for AIS girls show that higher and lower
BMI subsets relative to median BMI values for age have differ-
ent patterns by each of (1) skeletal sizes for age, (2) bilat-
eral skeletal length asymmetries, and (3) skeletal
overgrowth for age in preoperative AIS compared with
normal girls, which is systemically distributed suggesting
hormonal effects.

Body Mass Index (BMI) Subsets in AIS and 
Normal Girls Reveal Effects of Energy Stores on 
Skeletal Maturation, Asymmetry and 
Overgrowth: Summary of Recent Findings
Three groups of adolescent girls were measured: normals
(n = 274 in 1973-81); routinely screened for scoliosis
using a prescribed method [178] (n = 137 in 1988-2001);
and preoperative (n = 122 in 1992-99). The possibility
that observed skeletal differences were due to secular
changes (except for sitting height at 10 years of age) was
excluded by comparing data from healthy girls measured
in 1994-6 with those measured in 1973-81 [140]. The
BMIs were not significantly different between groups with
4.7%, 4.6% and 5.6% respectively outside the 95% confi-
dence intervals of the BMI values, almost entirely over-
weight. These percentages are lower than expected from
societal changes [156].

Energy priority of trunk width growth is revealed by body mass
index (BMI) subsets in adolescent girls (Figures 4 and 5) -
intrinsic or extrinsic mechanisms? A contrast with vertebral
length growth in melatonin-deficient mice

Figure 4 shows that preoperative girls in the higher BMI
subset have larger biiliac widths for age relative to those in
the lower BMI subset (p < 0.001). We reported that BMIs
above and below mean (now median) levels separated girls
with relatively earlier and larger trunk width at each of the

pelvis, chest and shoulder girdle for each of a) preopera-
tive, b) screened [46,117-119] (except for biacromial
width in screened girls), c) normal adolescent girls
[47,48], and d) normal juvenile girls at 5-10 years [49]
with little or no such effect in limb segment lengths (Fig-
ure 5). We term this phenomenon energy priority of trunk
width growth. Normal boys show this BMI effect on skele-
tal maturation in trunk widths and, unlike girls, also in
the limbs during adolescence [47,48] and at 5-10 years
[49].

• "Energy", is used because relatively higher BMI prob-
ably implies relatively higher circulating leptin indi-
cating more energy available from fat.

• "Priority", is used because growth plates (GPs) con-
tributing to the trunk width of girls, take priority over
those in limbs in "tapping" available energy.

(1) How does the higher BMI subset of preoperative
girls attain greater biiliac width for age than the lower

Biiliac widths for preoperative girlsFigure 4
Biiliac widths for preoperative girls. Graphs showing 
best-fit quadratic regression lines by age in years for higher (n 
= 65) and lower (n = 57) BMI subsets relative to median BMI 
values by each year of age (CA = Cobb angle, mean BMIs 21.7 
and 17.3 respectively, p < 0.001). The girls in the higher BMI 
subset have larger biiliac widths for age relative to those in 
the lower BMI subset (p < 0.001, correcting for menarcheal 
age p = 0.020). Mean menarcheal ages for relatively higher 
(MH) and lower BMI (ML) subsets are 12.82 years and 13.43 
years (p = 0.048, premenarcheal n = 7 & 19 respec-
tively)(analyses of variance correcting for age or menarcheal 
age).
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BMI subset? The earlier menarcheal age of the higher
BMI subset with earlier puberty suggests hormonal
effects cause earlier iliac maturation with relative over-
growth of younger AIS girls.

(2) Why is this BMI-related earlier maturation of trunk
widths - biiliac, chest and biacromial in girls scarcely
found in the limb lengths of girls? (Figure 5). The
growth plates in trunk and limbs may respond -

• intrinsically and differently to hormones by
genetic programs established in early embryogene-
sis, and/or

• extrinsically in the presence of any sympathetic
nervous system innervation (see Autonomic nerv-
ous system - leptin-hypothalamic-sympathetic
nervous system (LHS)-driven mechanism in
health and LHS concept in AIS).

Energy priority of trunk length growth in leptin-deficient 
mice?
In leptin-deficient mice (ob/ob) altered leptin signaling has
significantly different effects on bone growth in the axial
and appendicular skeletons [179]. Compared with nor-
mal mice, leptin-deficient mice have significantly shorter
femora, and significantly increased vertebral lengths, a
trend confirmed in subsequent research [180]. Suggested
reasons for this axial/appendicular skeletal growth differ-
ence in mice include: (1) decreased thigh muscle mass as
a factor for the femoral shortening through mechan-
otransduction pathways [179]; and (2) vertebral growth
plates respond to absent leptin signals in a fundamentally
different manner from long bone growth plates [180]. The
latter interpretation is consistent with the view that leptin-
deficient mice have energy priority of vertebral linear
growth relative to limb bones, in contrast to the energy pri-
ority of trunk width growth in girls (Figure 4). This apparent
human/mouse difference is consistent with an evolution-
ary change to the trunk broadening of hominins (Figure
5) (hominins include living humans and fossil species
that are ancestral to living humans, see Evolutionary Ori-
gins).

Skeletal asymmetries
Mean upper arm length asymmetries in preoperative girls
In the lower BMI subset, mean upper arm length asymme-
try (7.0 mm, right minus left)) is significantly greater pre-
operative than in screened (-0.8 mm) and normal girls
(2.1 mm)(each p < 0.001 with statistically significant var-
iance ratios). In the higher BMI subset, mean upper arm
length asymmetries are respectively 3.7 mm, 1.1 mm, and
2.4 mm, greater in preoperative than screened girls (p =
0.031) (analyses of variance correcting for age) [46].

Right thoracic AIS, curve severity and upper arm length 
asymmetries
Figure 6[181] shows that apical vertebral rotation is signif-
icantly associated with upper arm length asymmetry for
the lower, but not higher BMI subset, also for Cobb angle (p
< 0.001, r = 0.510) [46,120,121]. These findings suggest
that the abnormal upper arm length asymmetry of tho-
racic AIS [32] is not secondary to the spinal deformity but
has a pathogenesis common to the spinal deformity [32].

Right thoracic AIS, upper arm length asymmetry and age
In girls with right thoracic AIS, mean upper arm length
asymmetry is significantly greater than normal girls (5.6/
2.2. mm, p < 0.001). The asymmetry is similar at 11-12
years of age in both higher and lower subsets. It negatively
regresses on age in the higher BMI subset (p < 0.001, r = -
0.486) but not significantly in the lower BMI subset (p =
0.125, r = -0.212, variance ratio of lower to higher BMI
subset = 2.05, p < 0.01); and menarcheal age negatively
regresses on upper arm length asymmetry in the higher

In the autonomic nervous system of normal adolescent girls, the leptin-hypothalamic-sympathetic nervous system (LHS)-driven mechanism (red) supplements bilaterally the blood-borne hor-monal contribution (lowest oblique arrow) to trunk width growth at the pelvis, chest and shoulders (yellow box) with little or no sympathetic nervous system (SNS)-induced effect in the limbs (upper arms, forearm-with-hands, tibiae and feet) [46,117-119]Figure 5
In the autonomic nervous system of normal adoles-
cent girls, the leptin-hypothalamic-sympathetic nervous 
system (LHS)-driven mechanism (red) supplements 
bilaterally the blood-borne hormonal contribution 
(lowest oblique arrow) to trunk width growth at the 
pelvis, chest and shoulders (yellow box) with little or 
no sympathetic nervous system (SNS)-induced effect 
in the limbs (upper arms, forearm-with-hands, tibiae 
and feet) [46,117-119]. In the preoperative AIS girls, the 
LHS concept suggests that the GH/IGF axis (upper arrow 
labeled GH/IGF) and possibly estrogen [122], causes exagger-
ation of the SNS-induced vertebral/rib length asymmetry with 
both GH/IGF and sympathoactivation contributing to scolio-
sis curve progression (Figure 6) in an inverse pathogenetic 
relationship. The LHS concept suggests that both putative 
mechanisms, GH/IGF and SNS, provide therapeutic potential 
for progressive AIS in girls (GPs = growth plates, see Endo-
crine and Therapeutic Implications).
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Right thoracic AIS girls from preoperative (n = 77) and screened (n = 33) girlsFigure 6
Right thoracic AIS girls from preoperative (n = 77) and screened (n = 33) girls. Linear regression analyses, Pearson 
correlation coefficients and scatter diagrams of apical axial vertebral rotation (AVR, Perdriolle [181]) against upper arm length 
asymmetries (right minus left) for higher (n-57) and lower (n = 53) BMI subsets (mean BMIs 21.8 and 17.3 respectively, p < 
0.001). Note, the statistically significant correlation for the lower (p = 0.002, r = 0.421) but not higher BMI subset (p = 0.444, r 
= 0.105); the difference between higher and lower BMI subsets after correcting for menarcheal age is statistically significant for 
AVR (p = 0.001) but not Cobb angle (p = 0.199). Mean Cobb angles 45.4/45.4 degrees of similar curve types; mean AVRs 23.9/
19.7 degrees (p = 0.015) both independent of age; mean upper am length asymmeties (right minus left) 4.7/6.7 mm (p = 0.172) 
both significantly different from normals (p = 0.005/p < 0.001); mean menarcheal ages 12.69 years and 13.31 years (p = 0.046, 
premenarcheal n = 5 & 14 respectively) (ANOVAs correcting for age) [46,120,121].

Corrected stature by age for preoperative and normal girlsFigure 7
Corrected stature by age for preoperative and normal girls. Corrected standing height (by the Bjure-Nachemson for-
mula [182]) plotted against age in years for relatively higher (n = 65) and lower (n = 57) BMI subsets (CA = Cobb angle). 
Graphs show best-fit quadratic regression lines for preoperative and normal girls with p values for differences between preop-
eratives and normals (correcting for menarcheal age p < 0.001 for each BMI subset). MN = menarcheal age of normals, M 
preop = menarcheal age of preoperative girls: mean menarcheal ages of preoperatives and normals in higher BMI subset 12.82 
years and 12.59 years (p = 0.717); and lower BMI subset 13.43 years and 13.14 years (p = 0.825, premenarcheal for normals n = 
45 & 63 respectively). Mean BMIs for preoperatives as in Figure 4, and for normals 21.0 (n = 139) and 17.3 (p < 0.001 n = 135) 
(ANOVAs correcting for age or menarcheal age) [29,122].
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BMI subset (p = 0.027, r = -0.325). This 'transient' asyn-
chronous upper arm length growth detected with abnor-
mal systemic earlier skeletal overgrowth for age as in some
younger preoperative girls (Figure 7), suggests a relation
to pathogenesis. There were insufficient girls with left tho-
racic AIS for separate analyses (n = 12 [46]) (see Discus-
sion, Upper arm length asymmetry and the higher BMI subset
of right thoracic AIS, and Skeletal asymmetries and lower BMI
subsets).

Skeletal overgrowth for age in preoperative AIS/normal 
girls (Figure 7)
Figure 7[182] shows that with relatively higher BMIs, the
younger AIS girls, have larger corrected stature for age than
do the normal girls, becoming normal sizes by 16 years of
age (p < 0.001, ANOVA with age correction). This pattern
is found in each of 11 skeletal segments, four of them in
bilateral limb segments suggesting a systemic response.
Mean menarcheal ages are not significantly different. The
skeletal pattern for age suggests earlier skeletal maturation
with overgrowth in these younger girls probably from cir-
culating hormones ? GH/IGF-I and possibly estrogen
[29,122]. The AIS girls with relatively lower BMIs show a
more complex pattern with two growth phases: earlier
phase similar to normals, and later phase in most skeletal
segments, mainly postmenarcheal, with larger overall
skeletal growth attained for age in preoperatives relative to
normals, ? estrogen effect [29,122]. The similar mean
Cobb angle and apical vertebral rotation show that while
curve severity at the time of surgery appears independent
from (1) skeletal growth patterns, and (2) BMI subsets, we
suggest that common factors in different proportions and
other common factors, determine the similar curve sever-
ities in both subsets (see Discussion Skeletal sizes for age -
curve severity, sympathoactivation and hormonal stimulation).

Back contour asymmetry in normal girls and boys
The excess of severe back humps in girls and boys was
associated with lower BMI subsets [123-125].

Considered together, the above findings are not explained 
by any of the prevailing theories of AIS pathogenesis 
(Appendix 1, items 1-15)
A more comprehensive hypothesis for girls with AIS was
required involving energy homeostasis and the hypotha-
lamus in a disorder presenting as abnormalities of trunk
growth with axial and appendicular skeletal asymmetries
and in preoperative girls with systemic skeletal features.

Scientific Basis of Leptin-Hypothalamic-
Sympathetic Nervous System (LHS) Concept
From a novel interpretation of the above findings, the lep-
tin-hypothalamic-sympathetic nervous system (LHS) con-
cept for AIS pathogenesis was formulated [25,26] after
surveying evidence relating to:

1. Thoracospinal concept.

2. New neuroskeletal biology.

3. Energy homeostasis and sympathetic nervous sys-
tem.

4. White adipose tissue, leptin, hypothalamus, sympa-
thetic nervous system and bone formation/resorption
in health.

5. Leptin and bone growth in mice.

6. Leptin and bone growth in children.

7. Leptin, hypothalamus and AIS.

8. Central leptin resistance in obesity and possibly in
healthy females.

9. AIS as a systemic disorder - platelet calmodulin dys-
function.

10. AIS as a systemic disorder - melatonin, melatonin
signaling, osteopontin and soluble CD44 receptor.

11. Some melatonin-deficient mouse models of scol-
iosis - markers of developmental stress?

12. Osteopontin and bone remodeling in mice.

13. Melatonin receptor 1B (MT1B), AIS, glucose
metabolism and type 2 diabetes.

Thoraco-spinal concept
Right thoracic, but not left thoracic AIS in girls, is consid-
ered by Sevastik and colleagues to be initiated by dysfunc-
tion of the sympathetic nervous system leading through
vascular changes to relative overgrowth of concave peri-
apical rib lengths [59-63]. This section is written in collab-
oration with Professor JA Sevastik. Compared with right
thoracic AIS, the pathogenesis of left thoracic AIS in girls
remains relatively unexplored [[114,115], see DISCUS-
SION (6)]. The thoracospinal concept of pathogenesis
was established from anatomical and clinical evidence
including left-right asymmetries of thoracic skin tempera-
ture, breast size and vascularity, and periapical rib length
asymmetry [30]. Subsequent experimental studies [61]
provided evidence for the correction of experimentally-
induced scoliosis consistent with the pathogenetic conclu-
sions. The thoracospinal concept is supported by recent
studies on breast size [183], vascular [184,185] and
peripheral nerve [186] findings. It does not encompass
evidence relating to the new neuroskeletal biology, energy
homeostasis, or white adipose tissue which is central to
Page 10 of 40
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the regulation of energy balance by adipokines, particu-
larly leptin, hormones of the digestive system and metab-
olites, particularly glucose (Figure 8).

Biomechanical mechanisms are thought to be involved in
pathogenesis. Evidence [60] showed that gradual elonga-
tion of one rib affects the position of the numerically cor-
responding vertebra in the three cardinal planes in a way
similar to the apical vertebra in idiopathic scoliosis. The
disc space wedging is explained by the rotational move-
ment of the central vertebra in the frontal plane, and the
lordotic tendency of the scoliotic segment is explained by
ventral vertebral translation in combination with tilt in

the sagittal plane. Curve progression is attributed to bio-
mechanical mechanisms [63,80-82].

New neuroskeletal biology (Figure 8)
In the last decade it was shown initially in mice, that the
central nervous system regulates bone remodeling, and
more recently longitudinal bone growth via the sympa-
thetic nervous system linking leptin-responsive hypotha-
lamic neurons to bone tissue [187-198]. In reviewing this
new field of neuroskeletal biology, Patel and Elefteriou
[195] summarize long-standing clinical observations
relating to bone and the nervous system including reflex
sympathetic dystrophy, hyperplastic callus associated
with head injury and myelomeningocoele, and osteope-

Diagram of relevant somatic (blue) and autonomic nervous systems (ANS, red) in girlsFigure 8
Diagram of relevant somatic (blue) and autonomic nervous systems (ANS, red) in girls. Note, leptin, hypothalamic-
pituitary-ovarian axis and sympathetic axis in the ANS. The sensory input, motor output and PPC relate to the somatic nervous sys-
tem and the rest illustrate leptin, hypothalamus and sympathetic nervous system of the LHS mechanism and concept. The neuroendo-
crine control of the female reproductive axis and the bilateral sympathetic nervous system control of skeletal and adipose 
tissues are shown. Ganglia = ganglionated sympathetic trunk. Sympathetic nerves are shown as thin continuous lines and hor-
mones as interrupted lines. Pre- and post-ganglionic sympathetic nerves are shown bilaterally with arrows indicating enhance-
ment of function, and blunted lines as inhibition. F = frontal lobe, P = parietal lobe, PPC = posterior parietal cortex (Area 7 
with body schema), VC = visual cortex, GnRH = gonadotropin-releasing hormone, FSH = follicle stimulating hormone, LH = 
luteinizing hormone, ICA = intercostals artery, T/L = thoracolumbar.
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nia associated with stroke, spinal cord injury and periph-
eral neuropathy. Conflicting reports on the effect of β-
blockers for risk of fractures are published, and rand-
omized clinical trials are needed [199]. Theoretically, neu-
roskeletal mechanisms expressed via the sympathetic
nervous system through its bilaterality (Figure 5), could cre-
ate asymmetries, although from animal experiments there
is no evidence for or against such asymmetries.

Energy homeostasis and sympathetic nervous system 
(Figure 8)
Bodily energy reserves are managed actively by complex
systems that regulate food intake, substrate partitioning
and energy expenditure thereby regulating long-term adi-
posity [200]. Energy homeostasis, fat and glucose metab-
olism are regulated by integratory centers in the central
nervous system which receive, and convey information by
signals from peripheral organs (such as adipocytes, gut
and pancreatic islets - eg insulin and amylin both short-
term satiety signals, the latter being a hind brain signal),
and which send efferent neural and hormonal signals to
peripheral tissues that regulate food intake, energy
expenditure, metabolism and behavior (feeding) [200-
203]. The obesity genes MC4R, FTO and SH2B1 may par-
ticipate in the central control of energy homeostasis [172-
174,200,203]. A neuroanatomical framework explaining
the effects of leptin on neuroendocrine and sympathetic
nervous system function has been reported [204].

White adipose tissue, leptin, hypothalamus, sympathetic 
nervous system and bone formation/resorption in health 
(Figure 8)
Adipose tissue, where fatty acids are stored as triglycerides
in lipid droplets, is central to the regulation of energy bal-
ance [205]. White adipose tissue constitutes separate
depots that contribute with the hypothalamus as the key
centre for integration and control of energy balance [200].
Leptin, best known as a satiety hormone, a signal of
energy sufficiency and long-term adiposity, is one of sev-
eral cytokine-like hormones secreted by adipocytes
[1,2,200]. In girls there are gradual age- and BMI-related
increases in circulating leptin levels [206]. Molna-Car-
ballo et al [12] from a longitudinal study reported that the
leptin concentration increases in both sexes with the pro-
gression of puberty, this value being 40% greater in girls,
which correlates with the increase in body volume and fat
accumulation [206,207]. Girls have higher serum leptin
levels before, during, and after puberty than boys, even
after accounting for the development of greater female
adiposity [207]. The sexual dimorphism in leptin concen-
trations during puberty appears to be partly due to a stim-
ulatory effect of estradiol on fat deposition and leptin
concentration in females and a suppressive effect of testo-
sterone on leptin concentration in males [207]. Leptin

levels in men are lower than women at all decades of life
[208].

Leptin, the product of the obesity gene (ob) circulates in
both free and bound form, and targets neurons including
the arcuate nucleus and other nuclei of the hypothalamus
[200]. Leptin is a master hormone that acts via a specific
receptor (OB-R with six types of receptor, LepRa-LepRf;
the longest form, LepRb is the only receptor isoform that
contains active intracellular signaling domains). The lep-
tin receptor is present in a number of hypothalamic
nuclei, where it exerts its effects. within a complex web of
signals with many regulatory functions for food intake,
body weight, increasing energy expenditure through sym-
pathoactivation, thermogenesis, other metabolic and
endocrine functions, reproduction, immune/inflamma-
tory responses, and wound healing, mainly through sign-
aling to the hypothalamus including [1,2,200,209]:

a) appetite repression and body weight control (anti-
obesity, anorexigenic);

b) initiation of puberty in girls as one gate with kisspep-
tin in a permissive role [1,2]; genetic variation in
LIN28B on chromosome 6 is associated with the tim-
ing of puberty [210];

c) stimulation of the sympathetic nervous system,
more in females than in males, possibly because of
their greater fat mass [211,212];

d) in bone formation, anti-osteogenic in mice acting
centrally through the sympathetic nervous system
[187-192,194-197,213] involving the molecular clock
and circadian regulation [214], possibly with an oppo-
site direct effect on bone [190,195,196,198]. Several
genes are identified having high levels of expression in
the hypothalamus [192,195,196]. Mice lacking β-
adrenergic receptors have increased bone mass [215].
In feedback, the skeleton exerts an endocrine regula-
tion of energy metabolism through the Esp gene exclu-
sive to osteoblasts controlling secretion of the
hormone-like substance osteocalcin [216-218] (Figure
8).

Animal experimentation suggests a two-way interaction
between leptin and the sympathetic nervous system, with
leptin causing sympathoactivation, and the sympathetic
nervous system exercising regulatory feedback inhibition
over leptin release [219].

Leptin and bone growth in mice (Figures 8 and 9)
Leptin stimulates longitudinal bone growth in leptin-defi-
cient (ob/ob) and leptin-receptor deficient (db/db) mice
[180,194,220-222], and growth plates in culture
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[180,222-224] being chondro-osteogenic and angio-genic
[190]. The leptin appears to act centrally through the sym-
pathetic nervous system (Figure 8) [190,194,213], growth
hormone stimulation [180,190,220,222], and peripher-
ally [190,222] with a direct effect on growth plate
chondrocytes by its signaling receptor [180,220,222], reg-
ulating IGF-I receptor expression [190,223], and by other
mechanisms (Figure 9) [180]. There is evidence for mice,
that vertebral body growth plates may respond to leptin
differently from long bone growth plates [179,180]. Iwan-
iec et al [194] propose that hypothalamic leptin plays a
role in coupling energy homeostasis and bone growth,
acting as an important permissive factor for normal bone
growth. Leptin appeared in evolution with the bony skel-
eton [216].

Leptin and bone growth in children
Maor et al [223] reviewed clinical evidence that after
craniopharyngioma surgery in children, circulating leptin
may contribute to bone growth including normal height
velocity [225]. Children with exogenous obesity usually
show increased height velocity [226], and their serum lep-
tin levels are approximately five times that of normal chil-
dren [227], with obese children being taller than average

from 6-9 years [225], showing more advanced bone age/
chronological age [227], earlier puberty and menarche
[226] and no significant correlation of leptin and estra-
diol levels [228].

Montague et al [229] reported two severely obese consan-
guinous children with congenital leptin deficiency, the
findings of which strongly suggested that leptin critically
influences energy balance in prepubertal humans. One
child developed abnormalities of growth in long bones of
her legs treated by corrective surgery, an abnormality
attributed to growth plate fragility [180]. Subsequently, in
three children who were congenitally deficient in leptin
and morbidly obese, Farooqi et al [230] reported radio-
logical skeletal maturation was increased by 2.1 years, and
that leptin therapy produced beneficial effects on the skel-
eton.

Severe dietary restriction, a common cause of leptin insuf-
ficiency and growth/length restriction in humans [194], is
probably associated with, and explained by, decreased GH
and IGF-I receptors in growth plates [231].

Diagram showing three hormonal ways in which leptin stimulates growth plates: (1) GH by stimulating GHRH-producing neu-rons and inhibiting somatostatin-producing neurons, (2) IGF-1; and (3) directlyFigure 9
Diagram showing three hormonal ways in which leptin stimulates growth plates: (1) GH by stimulating GHRH-
producing neurons and inhibiting somatostatin-producing neurons, (2) IGF-1; and (3) directly. [GH = growth 
hormone, GHRH = growth hormone releasing factor, SRIF = somatotropin release inhibiting factor (somatostatin) (Diagram 
modified from Gat-Yablonski and Phillip [222]).
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Leptin, hypothalamus and AIS
Qiu and colleagues [163,164] reported a marked decrease
in circulating leptin in AIS girls compared with controls,
confirmed by Dr A Moreau (personal communication).
Positive correlations were found between leptin and each
of age, menstrual status, weight, corrected height, BMI,
Risser sign, bone mineral content and bone mineral den-
sity (lumbar spine and femoral neck) but not Cobb angle,
suggesting that leptin may play an important role in the
lower BMI of AIS girls [164]. Longitudinal studies are
needed.

Central leptin resistance in obesity and possibly in healthy 
females
Central leptin resistance is defined as reduced ability of cir-
culating leptin to suppress appetite and weight gain and to
promote energy expenditure [232].

In obesity. Central leptin resistance isconsidered to be one
of the main causes of obesity [232,233]. It is thought to
result mostly from a state of diminished hypothalamic
responsiveness to increased levels of circulating leptin
[200] which may be selective [232-236].

In healthy females: normal juvenile girls and somatotropic axis.
Central leptin resistance may occur normally in girls
[227], and in pregnancy thereby permitting the accumula-
tion of adipose tissue stores necessary for growth, repro-
duction and lactation [227,237]; leptin sensitivity returns,
possibly by signaling mechanisms [232], or by altering
the leptin dose-response curves [223,238]. There is pre-
liminary evidence [50] suggesting that the hypothalamus
of some normal juvenile girls, but not boys, functions
with central leptin resistance of the somatotropic (growth hor-
mone/IGF) axis. This putative mechanism, is interpreted as
limiting energy invested in female skeletal growth thereby
conserving energy for reproductive development [50]. It
may be related to the female predisposition to AIS.

Hypothalamic mechanisms of central leptin resistance in 
obesity
Several mechanisms have been revealed to explain central
leptin resistance in obesity [232], namely:

(1) Impaired leptin transport across the blood-brain bar-
rier e.g. triglycerides [238-240].

(2) Serum leptin interacting proteins (SLIPS) such as C-
reactive protein [[241], but see [200]].

(3) Inflammation [239,242].

(4) Intracelluar inhibitory molecules (negative regulators)
of leptin signaling including -

a) the suppressors of the cytokine signaling (SOCS) family
[200,243,244],

b) protein-tyrosine phosphatases (PTPs) [200,245,246];
and

c) OB-R gene related protein (OB-RGRP) [247,248].

a) Suppressors of the cytokine signaling (SOCS). Howard et al
[243] and Mori et al [244] noted that the leptin receptor
is highly expressed in the hypothalamus and belongs to
the cytokine-receptor superfamily that activates the Janus
tyrosine kinase-signal transducers and the activators of
transcription (JAK/STAT) pathway to modulate cellular
responses in a negative feedback loop [[249,250], for
detail and other pathways see [232]]. They report evidence
for mice that SOCS-3 neuronal deletion enhances leptin
sensitivity [244,250] as does haploinsuffiency of SOCS-3
[243]. SOCS-3 is also a human gene. SOCS-2, a genetic
determinant of height growth in normal children, is
involved in the regulation of IGF-I signaling [251].

b) Protein-tyrosine phosphatases (PTPs). PTP-1B also con-
tributes to leptin resistance by inhibiting intracellular lep-
tin receptor signaling by inhibiting JAK2 activation
[232,240,252]. PTP-1B deficient mice by knockout and by
an antisense (anti-DNA) oligonucleotide designed to blunt
the expression of PTP-1B, showed improved leptin and
insulin action [252]. PTP-1B is a major regulator of energy
balance, insulin sensitivity, and body fat stores [246].
PTP-1B is also a human gene.

c) OB-R gene related protein (OB-RGRP). Couturier and
colleagues [247,248,253] report that OB-RGRP negatively
regulates the specific leptin receptor OB-R in the hypoth-
alamus of mice. They comment that if the results obtained
in the diet-induced obesity mouse model are transposable
to humans, targeting the regulator of the leptin receptor
rather than the receptor itself (either by RNA interference
or by pharmacological antagonists), could be a more
appropriate basis for identifying potential new therapeu-
tic targets for a variety of diseases, including obesity.

(5) Intracelluar stimulatory molecules (positive regula-
tors) of leptin signaling. According to Morris and Rui
[232], SH2B1 enhances leptin signaling. It appears to be
required for the maintenance of leptin sensitivity, energy
balance and body weight, ultimately through activation of
the PI 3 kinase pathway. The ability of SH2B1 to enhance
leptin sensitivity may be modulated by other members of
the SH2B family. Cellular leptin sensitivity may be deter-
mined, at least in part, by a balance between positive (e.g.
SH2B1) and negative (e.g. SOCS3 and PTP-1B) regulators.
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(6) Chronic endoplasmic reticulum (ER) stress, mediated
through protein tyrosine phosphatase 1B and not through
suppressors of cytokine signaling-3 [233], contributes to lep-
tin resistance and obesity, presumably by activating vari-
ous unfolding protein response signaling pathways,
[232]. Inhibition of ER stress in the hypothalamus by
either genetic or pharmacological means markedly
improves leptin sensitivity and decreases food intake and
body weight in mice [232].

(7) Defects in neural circuitry including impairment of
MC4R signaling in the paraventricular nucleus, induce
leptin resistance, hyperphagia and obesity, with genetic
and environmental factors modulating the synaptic
remodeling and rewiring of this circuitry [232].

The challenge is to develop diagnostic approaches for the
different forms of central leptin resistance and design per-
sonalized healthcare programs to treat obesity [232].

AIS as a systemic disorder - platelet calmodulin 
dysfunction [21,22,107]
Lowe et al [21,22] suggested that altered paraspinal mus-
cle activity explained the relationship between platelet
calmodulin level changes and Cobb angle changes in AIS
with calmodulin acting as a systemic mediator of tissues
having a contractile system (actin and myosin). An alter-
native speculative concept to explain the findings of Lowe
is that in predisposed subjects, platelet activation with cal-
modulin changes occurs within dilated vessels of deform-
ing vertebral bodies [107]. The activated platelets in juxta-
physeal vessels release growth factors which, after extrava-
sation, abet the hormone-driven growth of the already
mechanically-compromised vertebral endplate physes to
promote the relative anterior spinal overgrowth (RASO)
and curve progression of AIS.

AIS as a systemic disorder - melatonin, melatonin-
signaling, osteopontin and soluble CD44 receptor
Melatonin deficiency
Machida and colleagues [7] found lower plasma melatonin
(MLT) levels through 24 hours with progressive AIS curves
and concluded that MLT disturbance has a role in AIS pro-
gression more than its cause. They suggested that AIS is an
inherited disorder of neurotransmitters from neuro-hor-
monal origin affecting MLT associated with a localized
neuromuscular imbalance and torsion in the bipedal con-
dition [8,9]. The relevance of lower circulating MLT levels
to AIS pathogenesis is now controversial since no signifi-
cant decrease in circulating MLT levels has been observed
in a majority of studies [254-256].

• MLT and leptin are said not to interact in the initia-
tion or progression of human pubertal development
[11].

• The relationship between MLT and GH is poorly
understood [10,257].

• How MLT may interact with estrogens is discussed by
Leboeuf et al [258].

• Melatonin-calmodulin interaction may represent a
major mechanism for regulation and synchronization
of cell physiology [22,259].

Systemic melatonin-signaling dysfunction
In progressive AIS, Moreau et al [14] found melatonin-sig-
naling transduction to be impaired in osteoblasts, myob-
lasts and lymphocytes caused by the inactivation of Gi
proteins. These findings, extended in subsequent papers
[15-18], led to the conclusion that melatonin-signaling
dysfunction detected in osteoblasts, myoblasts and lym-
phocytes is a decisive factor for the pathogenesis of AIS
[17].

Osteopontin and soluble CD44 receptor
Most recently, Moreau et al [19,20] reported mean plasma
osteopontin (OPN) levels to be increased in:

• patients with idiopathic scoliosis, correlating signifi-
cantly with curve severity, and

• "an asymptomatic at-risk group" (offspring born
from at least one scoliotic parent).

In contrast, mean plasma levels of soluble CD44 receptor
(sCD44) were significantly lower in patients with Cobb
angles of 45 degrees or more. Drawing on evidence from
mouse models, it was concluded that OPN is essential to
induce scoliosis formation and curve progression through
interactions with CD44 receptors, "thus offering a first
molecular concept to explain the pathomechanism leading to
the asymmetrical growth of the spine in idiopathic scoliosis."
[19].

We ask whether:

(1) in mice, the scoliosis of melatonin-deficient models
has another interpretation; and

(2) in the AIS subjects [19,20], the increased OPN levels
are secondary to bone remodeling.

Some melatonin-deficient mouse models of scoliosis - 
markers of developmental stress?
Moreau et al [19,20] found all transgenic melatonin-defi-
cient C57Bl/6J mice [150] devoid of OPN or CD44 recep-
tor were protected against scoliosis, contrasting with wild-
type ones. May this be, not because OPN is essential for
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scoliosis pathogenesis, but because OPN deficiency
reduces stress reactions in mice [260]?

For, in mice, circulating OPN plays a significant role in the
body's reaction to stress by regulating hormones of the
hypothalamic-pituitary-adrenal axis (HPA) [260] modulated
by leptin which activates the JAK/STAT pathway. Stressors
cause less up-regulation of the stress hormone corticoster-
one in OPN-deficient mice [260]. This may be tested in
the model used for mice: (1) rendered bipedal at 3 weeks
of age, and (2) kept in tall cages to make them reach up
increasingly for food and water [150]. The developmental
stress hypothesis [261], if confirmed, suggests that OPN
deficiency through reduced corticosterone up-regulation
causes less stress-reaction damage to the neural develop-
ment of posture and so protects against the scoliosis. If so,
these transgenic mice findings [19,20] may not be rele-
vant to AIS pathogenesis.

Osteopontin and bone remodeling in mice
Osteopontin, a major non-collagenous bone matrix glyc-
oprotein originally isolated from bone - sialic acid rich,
phosphorylated and inhibitor of calcification - has a criti-
cal role in bone remodeling which in OPN-knockout mice
was suppressed [262]. Hence, the interpretation under
item 11. above, and the evidence from Fujihara et al [262],
together raise caution about attributing a causal, rather
than a consequential, role to increased plasma OPN in AIS
pathogenesis.

Melatonin receptor 1B (MT1B), AIS, glucose metabolism 
and type 2 diabetes
Promoter polymorphisms of the gene for melatonin
receptor 1B (MT1B) are associated with the occurrence of
AIS, but not directly with curve severity; this supports the
hypothesis of a MLT-signaling pathway dysfunction in AIS
[263]. There is a lack of association between promoter
polymorphism of the MTNR1A gene and AIS [264].
Genome-wide association studies have shown that mela-
tonin receptor 1B variation is also associated with insulin
and glucose concentrations; the risk genotype of this SNP
predicts future type 2 diabetes suggesting that blocking
the melatonin ligand-receptor system in the endocrine
pancreas could be a therapeutic avenue for type 2 diabetes
[265,266]. These genetic findings:

• are consistent with hormone receptors having a vari-
ety of parallel but independent downstream effects;
and

• raise the question: Do post-operative AIS girls after
60 years of age have a lower prevalence of type 2 dia-
betes, because they are protected by being leaner and
using their energy in a different way with a more effi-
cient burn within their systemic disorder?

AUTONOMIC NERVOUS SYSTEM - leptin-
hypothalamic-sympathetic nervous system 
(LHS)-driven mechanism in health and LHS 
concept in AIS (Figures 1, 4 and 5)
Trunk widening in normal adolescent girls and the putative 
LHS-driven mechanism
We postulate that in normal girls, trunk widening of the
pelvis, ribcage and shoulder girdle, characteristic of
humans, is contributed to by a leptin-hypothalamic-sympa-
thetic nervous system (LHS)-driven mechanism acting bilater-
ally (Figure 5). Differential sympathetic innervation
between axial and appendicular bones may be present
[196]. The pattern of skeletal sizes for age [47-49] suggests
that any differential innervation by the sympathetic nerv-
ous system may differ between girls and boys.

In normal human growth, biacromial broadening reflects
widening mainly of the underlying upper thorax (Figures
10 and 11) [149,267-269], and pelvic broadening reflects
iliac flaring and widening mainly of the sacral alae (Figure
12); the latter reaches its maximum in hominins to pro-
vide a firm base of support for the trunk during bipedal
posture and locomotion (Figures 13, 14) [153,267,269-
271]. Hominid lumbar vertebrae also exhibit a caudally
progressive widening of their laminae and of the space
separating their articular processes [270]. Pelvic inlet
width is a predictor of pediatric chest width [272].

The evidence suggests that pelvic widening in the frontal
plane [267] (which varies with climatic conditions),
together with pelvic incidence in the sagittal plane

Diagram of transverse sections of normal human thorax to show growth by age ranges: blue, fetus 7 months to term; green; term to 5 months; yellow, 5 months to 3 1/2 years; red, 3 1/2 years to adultFigure 10
Diagram of transverse sections of normal human 
thorax to show growth by age ranges: blue, fetus 7 
months to term; green; term to 5 months; yellow, 5 
months to 3 1/2 years; red, 3 1/2 years to adult. Tho-
rax width relative to depth increases mostly after 3 1/2 years 
(Modified from [268]).
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[273,274], provided hominins with conservation of
energy [273] through biomechanical economy enabling -

• bipedalism with upright posture [75,153],

• modified spinal movements [275], and in the last 3
million years -

• increasing fetal brain size [270,271,276,277] with
sagittal expansion of birth canal (Figure 12)
[149,270,271], possibly with the bigger brain, from
(1) a bigger baby,. (2) longer lumbar region, and (3)

ability to conceive of tool construction and usage
[276].

The evidence suggests that the medio-lateral dimension of
the birth canal has been relatively (but not absolutely)
ample since the australopithecine stage about 3 million
years ago (mya = megaannum) with a funnel-shaped
upper thorax (Figure 11) [269], as in the contemporary
chimpanzee (Figure 13). A more ovoid pelvic shape with
increase particularly of the sagittal dimension, then
evolved in response to increasing brain size particularly
from about 0.5 mya (Figure 12) [270,271] (see Evolution-
ary Origins).

The change in the ribcage from funnel-shaped to barrel-shaped in 3 million years of evolutionFigure 11
The change in the ribcage from funnel-shaped to bar-
rel-shaped in 3 million years of evolution. Reassembly 
of the fossil skeleton (black) of "Lucy" (Australopithecus afaren-
sis) compared with the skeleton of a modern human female. 
The upper thorax is funnel-shaped with narrow shoulders, 
like modern-day chimpanzees (Figure 12). The blades of the 
ilia have turned in providing hip mechanics appropriate for 
erect walking. Compared with the modern adult human 
female, "Lucy" was much smaller with the relative brain size 
of a chimpanzee, chimpanzee-shaped thorax, a broad pelvis 
from iliac flaring and widening of sacral alae (possibly related 
to gut size), and totally bipedal (Diagram modified from [269] 
and Burwell et al [149]).

Pelvis of "Lucy" and modern human female separated by 3 million years of evolutionFigure 12
Pelvis of "Lucy" and modern human female sepa-
rated by 3 million years of evolution. "Lucy's" sacral alae 
are wide thereby increasing separation at the hips, the ilia are 
more flared increasing the mechanical advantage for hip func-
tion, and frontal pelvic width greater than sagittal pelvic 
dimension. The major change visible in this view, namely the 
more ovoid form of the human pelvis, is accompanied by a 
sagittal expansion of the birth canal needed for the increase 
in brain size since "Lucy". (Modified from [271] and Burwell 
et al [149].
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The LHS concept for girls with AIS
AIS in girls from the standpoint of the autonomic nervous
system is viewed as expressing increased central leptin sen-
sitivity of hypothalamic sympathetic functions and, in
some girls, of the somatotropic axis, which subsequently
develop an inverse relationship. We speculate that AIS
arises from dysfunction of the normal LHS-driven mecha-
nism (Figure 5) by genetically-determined and selectively
increased hypothalamic sensitivity (up-regulation from
mutations) to circulating leptin leading to hypothalamic
asymmetry. The asymmetry is viewed as an adverse
response to stress [25,36], with asymmetric activity medi-
ated via the sympathetic nervous system bilaterally to ver-
tebrae and/or ribs (Figures 1 and 5), to upper arm lengths
in thoracic AIS, and to iliac heights in thoracolumbar and
lumbar AIS. The increased sensitivity of the hypothalamus
to leptin is viewed as being enhanced by increasing circu-
lating levels of leptin from the fat accumulation of adoles-
cent girls [12], despite the lower leptin levels of AIS girls
[163,164].

The requirements for the theory are that in dysfunction,
the sympathetic nervous system (SNS)-driven effects con-
tribute with neuroendocrine mechanisms to produce
[25]:

(1) Earlier skeletal maturation (hormonal).

(2) Sympathoactivation expressed asymmetrically in
vertebral growth plates in 1-3 dimensions - left-right,

front-back and/or torsionally - and in some paired
bones (Figures 5 and 6).

(3) General skeletal overgrowth for age systemically
distributed (hormonal)(Figure 7) [152].

(4) Left-right extra-spinal skeletal length asymmetries
(ribs, upper arms and ilia) (Figure 1) with upper arm
length asymmetry being a signal of thoracic vertebral
and/or rib length asymmetry (Figure 6).

(5) Increased hypothalamic sensitivity to circulating
leptin (up-regulation) involves the somatotropic (GH/
IGF-I) axis [222] in some younger preoperative AIS
girls (Figure 7, see Neuroendocrinology,. Sympathetic
nervous system and GH/IGF axis).

(6) Hormonal effects of the GH/IGF axis cause exag-
geration of the SNS-induced vertebral/rib length
asymmetry contributing to curve progression of pre-
operative AIS girls in an inverse relationship (Figure 5,
see Neuroendocrinology. Sympathetic nervous system
and GH/IGF axis).

(7) Relative osteopenia [88,278,279] which results in
part from sympathoactivation.

The lower BMI [163,164] and body fat of AIS girls may be
determined genetically [172-174] and contributed to by
sympathoactivation [176,219] from the putative hypoth-
alamic up-regulation to leptin (LHS concept) [25]. Over-

Trunk skeletons of female primates reduced to the same total lengthFigure 13
Trunk skeletons of female primates reduced to the 
same total length. Widening of the trunk - chest, shoulder 
and pelvis, is characteristic of all higher primates. Chimpan-
zees have an inverted funnel-shaped upper thorax with nar-
row shoulders. The human pelvis has increased in width 
mainly through great enlargement of its sacral portions but it 
is short as in monkeys [267] (Diagram modified from Schultz 
[267] and Burwell et al [149]).

Top views of thorax and left shoulder girdle in adult macaque and humanFigure 14
Top views of thorax and left shoulder girdle in adult 
macaque and human. In the macaque, the ribcage is nar-
row laterally and deep sagittally, while in truncally-erect 
forms it is expanded laterally and shallow from front to back, 
to keep the center of gravity over the feet. This trunk widen-
ing shifts the scapulae from the side to the back of the rib-
cage with clavicular lengthening, and the shoulder joints 
facing laterally rather than forward (Diagram modified from 
Schultz [267]).
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weight girls with AIS [170,171] probably reflect changes
from genetic (leptin resistance in relation to satiety) and
societal factors.

Central leptin resistance/sensitivity and the LHS concept 
for AIS pathogenesis in girls
The LHS concept for AIS pathogenesis of girls, views the
increased hypothalamic sensitivity to leptin as being at
the opposite end of the spectrum to the central leptin
resistance of obesity. This increased sensitivity to circulat-
ing leptin affects the hypothalamic sympathetic nervous sys-
tem and, in some AIS girls, the somatotropic neuroendocrine
axis. The effects produced in growing bones by these neu-
ral and endocrine mechanisms are influenced by the avail-
ability of energy, allocated by the hypothalamus through
hormones and the nervous system, modulated by circulat-
ing leptin levels that measure long-term adiposity.

Autonomic Nervous System - Possible Factors 
Causing Selective Hypothalamic Up-Regulation 
in AIS
We suggest five molecular mechanisms that might con-
tribute to the selective up-regulation of some hypotha-
lamic neurons to leptin in the LHS concept for AIS
pathogenesis.

G-protein coupled receptors
The putative dysfunction of hypothalamic neurons in AIS
- increased and asymmetric sensitivity to leptin, may
result from an abnormality of a G-protein-coupled recep-
tor, or G protein, to leptin [25]. The melatonin-signaling
dysfunction caused by the inactivation of Gi proteins so
far detected is peripheral [14-20], and it is unknown
whether any hypothalamic mechanism of etiopathogene-
sis is involved [Dr A Moreau personal communication].
Melanocortin-3 (MC3R) and MC4R are G-protein cou-
pled receptors highly expressed in the hypothalamus
[232].

Circulating osteopontin (OPN)
Subject to the caveat expressed for circulating OPN levels
having a causal role in AIS, increased levels of circulating
OPN [19,20] may act as a gate for AIS in the hypothala-
mus as does kisspeptin for puberty through its G-protein-
coupled membrane receptor GPR54 [2,280,281].

Inhibitory molecules in the JAK/STAT pathway
Subject to the demonstration of a significant functional
variation in human populations, inhibitory molecules such
as SOCS-3 [232,243,244,250], PTB-1B [232,240,252]and
possibly the regulator of the leptin receptor (OB-RGRP)
[247,248,253] - all as negative regulators of leptin sensi-
tivity, by their decreasing action, are candidates to increase
hypothalamic sensitivity to leptin in the LHS-driven con-
cept for AIS pathogenesis.

Stimulatory molecules in the PI 3 kinase pathway
As positive regulators of leptin sensitivity, members of the
SH2B family by their increasing action [232], are candi-
dates to increase hypothalamic sensitivity to leptin in the
LHS-driven concept for AIS pathogenesis.

Hormesis - the putative cause of asymmetry in the LHS 
concept for AIS
Hormesis is a bimodal dose response to drugs and toxins, first
stimulation and then an adverse response, usually inhibi-
tion [282-284]. There is evidence that this normal
hormetic process applies to leptin [223]. The dose effect
will be influenced by the combined effects of 1) increased
hypothalamic sensitivity to leptin, and 2) raised circulat-
ing leptin levels from adolescent female fat accumulation.
We speculate that in the hypothalamus the hormesis of
leptin, in adversity leads not to inhibition but to increased
sensitivity and asymmetry [36]. The concept is considered
plausible by Dr EJ Calabrese [personal communication].
In rats, infused leptin increases sympathetic nervous sys-
tem activity in a dose-dependent manner suggesting that
leptin may act hormetically on the normal rat hypothala-
mus [285].

Autonomic Nervous System - Rett and Prader-
Willi Syndromes
Rett syndrome
Rett syndrome is a genetic neuro-osseous developmental
disorder much more prevalent in girls than boys, charac-
terized by profound and progressive loss of intellectual
functioning and growth failure [286,287]. Raised circulat-
ing leptin levels and overactivity of the sympathetic nerv-
ous system [288] are associated with its pathophysiology
[286,287]. The skin sympathetic responses are related to
the side of the scoliosis, on the foot ipsilateral to the con-
vex side of the scoliosis where it shows a relatively lower
amplitude [286]. These findings are consistent with the
view that leptin and sympathetic nervous system dysfunc-
tion, under certain conditions, may be associated with
scoliosis expression and curve laterality.

Prader-Willi syndrome (PWS)
PWS, a rare multisystem genetic disorder, is thought to
result from a central hypothalamic-pituitary dysfunction
[289,290]. It is associated with failure to thrive in infancy
and progressive hyperphagia and obesity in childhood;
there is short stature with growth hormone (GH) defi-
ciency, obesity, eating disorders, decreased muscle mass,
hypotonia, hypogonadism, and a high prevalence of scol-
iosis in infants, juveniles and adolescents (15-86%) with
67% affected at skeletal maturity [289,291,292]. The
pathogenesis of the scoliosis is unknown [293]; it is unre-
lated to gender and BMI [292] and may be related to
decreased muscle mass, hypotonia, and hypo-excitability
of motor cortical areas with defective neurogenesis of cor-
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tical tissue [294]. The contribution of the autonomic nerv-
ous system, if any, to the scoliosis appears to be unknown.
PWS is not accompanied by deranged leptin concentra-
tions and there was no evidence of an interaction of the
GH/IGF axis with leptin metabolism in GH-deficient chil-
dren [295]. While infants with PWS, have higher leptin
levels than controls, suggesting a relative excess of fat to
lean body mass [296], adults with PWS have leptin assess-
ment corresponding to their degree of obesity [297] (see
Endocrine and Therapeutic Implications, GH treatment
and the Prader-Willi syndrome (PWS)).

Evolutionary Origins
From the initial chimpanzee-human divergence about 5-
7 mya, hominins may have evolved their loss of body hair
by about 3.3 to 1.2 mya and its replacement with
increased subcutaneous white adipose tissue (80% of all
fat) for insulation and energy stores, more in maturing
females than males [267,298-302]. About 2 mya, these
changes were associated with the decoupling of head and
trunk movements required for endurance running to hunt
down prey [303], since when the hominid lineage leading
to modern humans evolved significantly larger, and more
sophisticated brains, than other primates [299-302].

Melatonin decrease - the turning point of human 
evolution?
Explanations of "what makes us human" often include a
bridge between culture and biology [51]. Recently, it has
been suggested that decreased circulating melatonin levels
due to light from campfires extending the day, "changed
the timetable of growth, development and reproduction,
because sitting by the fire altered the night's flow of mela-
tonin and the cascade of hormones that follow it." [304].

Fat - Brain Growth and Nutritional Stresses
Power and Schulkin [301] in their book, 'The Evolution of
Obesity', outline an evolutionary hypothesis in relation to
fat and hominin brain growth [299,300]. The book is one
of the first to use an evolutionary framework to analyse a
major body of neuroendocrine knowledge about a spe-
cific condition [53]. Power and Schulkin write:

"Human beings have evolved to become very good at storing fat;
fat appears to have been very important in our evolution. For
example, human babies are among the fattest of all mammals...
...The importance of fat, both in our diet and on our bodies,
appears to have increased in human beings compared to our
nonhuman primate relatives. We suggest that this change in
nutritional biology was linked to the seminal evolutionary event
in our lineage: our larger brain." [301].

Nutritionally, human brain growth is said not to be costly
[299], but it does require docosahexaenoic acid (DXA),
present in body fat more at birth than at any other time in

life [300]. The functioning human brain enlarging partic-
ularly in the first two years of postnatal life, imposes a bur-
den on metabolism by -

• increasing energy demands, and

• restricting flexibility in energy allocation when nutri-
tional supply is disrupted - as in the nutritional
stresses of weaning and childhood infections
[299,301,302].

The relation of leptin to brain growth is not considered
here [133].

Fat - Trunk Width Growth and the LHS Normal 
Mechanism
We suggest that another 'seminal evolutionary event' - earlier
in our lineage than brain growth, was trunk width growth
which has increased more in human beings compared
with our nonhuman primate relatives; the latter lack the
extended childhood and rapid and large acceleration of
growth velocity at adolescence in humans (Figures 11, 12,
13, 14) [153,267,270,271,303].

• Pelvic width. In hominins, increased pelvic as iliac
and sacral width for habitual erect walking was estab-
lished by about 3 mya (Figure 12).

• Thorax and shoulder gitrdle width. Ribcage widening,
particularly of the upper thorax (Figure 11) happened
in the last 3 million years. The wide shoulders charac-
teristic of Homo [303] evidently resulted from upper
ribcage widening relative to depth (Figures 10 and
11), with clavicular lengthening (Figure 14). This
trunk widening at the shoulder girdles is likely to have
been selected by:

a) the evolution of upright posture giving an
enhanced respiratory importance to the upper tho-
rax [see [268]]; and

b) counter-rotations of upper thorax and arms
(but not the head) providing counter-balancing
torques generated by shoulder girdles and arm-
swinging needed to oppose torques created by the
pelvic rotations of hominin bipedalism
[71,149,268,303].

• Brain and pelvic depth. The large fetal brain size ena-
bling a dramatic jump of adult brain size from about
0.5 mya, was made possible by further expansion of
the birth canal, particularly sagittally (pelvic depth)
(Figure 12) [75,267,299-303].
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The LHS mechanism suggests that the fatness of hominins,
starting over 3 mya, raised circulating leptin levels which,
through the hypothalamus and sympathetic nervous sys-
tem, supplemented the hormonally-driven growth in
width of pelvis and ribcage [26] (Figures 10, 11, 12), and
not in nonhuman primates [153,267] (Figures 5, 13 and
14). This mechanism, we suggest, provided a process in
evolution that contributed to:

• pelvic widening mainly from sacral widening, ena-
bling bipedalism with upright posture, later

• upper thorax with shoulder widening, and still later

• increased pelvic depth of Homo sapiens (Figure 12).

The LHS mechanism is interpreted as being evident today
in normal human development as 'energy priority of trunk
width growth' in girls (Figures 4 and 5) [47-49].

We speculate:

• In evolution, to reduce toxicity to the hypothalamus
of the raised circulating leptin levels - signaling greater
adipose tissue stores particularly in females, hypotha-
lamic sensitivity to circulating leptin became dimin-
ished (desensitized, or down-regulated, i.e. central leptin
resistance), possibly involving increased action of inhib-
itory molecules such as SOCS-3 and PTP-1B, or
decreased action of stimulatory molecules such as
SH2B1. It needs to be established whether humans
deal with SOCS-3, PTP-1B, and SH2B1 differently
from other apes.

• In evolution, the development of human bipedalism
and upright posture necessitated adaptations of pos-
tural control by the somatic nervous system [51].

• The putative central leptin resistance in the somatotropic
(GH/IGF) axis of normal juvenile girls [[50], see
[227,237]] is linked to a greater evolutionary down-reg-
ulation to leptin in the female than the male hominin
hypothalamus.

Fat - AIS in Girls and the LHS Concept of Pathogenesis
The LHS concept for AIS pathogenesis suggests that the
putative genetically-determined selectively increased
hypothalamic sensitivity (up-regulation from mutations) to
leptin leading to hypothalamic sympathetic asymmetry is
rooted in the evolutionary origins of hominin fat deposi-
tion providing the energy needed for trunk width growth
and later, brain growth and metabolism. We posit that
increasing levels of circulating leptin associated with fat
accumulation of adolescent girls [12], enhance the puta-
tive increased hypothalamic sensitivity (sympathetic and

somatotropic) to leptin of AIS girls. This raises the ques-
tion: Is the societal fat accumulation of normal adolescent
girls [156] associated with increasing severity [170,171]
and/or prevalence of AIS?

Left-right asymmetries of the neuroendocine system and
of hypothalamic structure and sex-linked function are
reported in normal animals [305].

Endocrine and Therapeutic Implications
Within the somatic nervous system the escalator concept, at
present, does not provide any new therapy to improve
postural control for early AIS. In contrast, in the auto-
nomic nervous system, the LHS concept for AIS pathogen-
esis suggests two broad therapeutic strategies: through the
hypothalamus, and neuroendocrinology.

Hypothalamus
Badman and Flier [200] state that the improvement in cen-
tral leptin signaling by PTP-1B may provide a target for
pharmacological intervention for weight-loss therapies
[306]. Similarly, the LHS concept for AIS pathogenesis sug-
gests that impairment of central leptin signaling may ulti-
mately provide a target for pharmacological intervention
for progressive AIS in girls, if this can be done selectively.

Neuroendocrinogy
Sympathetic nervous system and GH/IGF axis
The LHS concept suggests manipulatable causes for therapy
(Figure 5) relate to:

(1) sympathetic nervous system causing asymmetries in
spine, trunk, upper arms; and

(2) increased levels of circulating growth hormone
(GH)[136,307,308] for age in AIS girls notably from 7-12
years, and in pubertal stage 2, and/or IGF-I formerly
known as somatomedin C [5,309].

Item (2) may exaggerate the putative sympathetic nervous
system-induced vertebral asymmetry particularly in pre-
pubertal and early pubertal growth and thereby contrib-
ute to curve progression (Figure 5). Hormonal
involvement in AIS progression is supported by the find-
ing that the initiation of the curve acceleration phase corre-
lates with the timing of peak height velocity and
simultaneously with digital changes in bone aging (400-
425 of the Tanner-Whitehouse RUS III method, stage F
covered phalangeal epiphysis to G capped phalangeal epi-
physis [5]).

The GH/IGF axis is the pivotal system [310] with estrogen
[311] for regulating axial growth during puberty. Evidence
from normal juvenile girls with relatively higher BMIs sug-
gests there is central leptin resistance in the somatotropic axis
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[[50], see [227,237]] which, through mutations causing
central leptin sensitivity, may predispose some girls to
AIS. Several papers suggest that the GH/IGF axis has a role
in the pathogenesis of AIS [310,312,313], with IGF-I pol-
ymorphism affecting curve severity of AIS but not its onset
[314]. Growth hormone treatment may increase the risk
of progression of scoliosis [315-318].

We suggest that in preoperative AIS girls with relatively
higher BMIs, the skeletal overgrowth for age (Figure 7)
[38,39,41,135-141,152] results from earlier and increased
hypothalamic sensitivity of the GH/IGF axis to leptin for age
leading to increased GH/IGF secretions, and possibly
estrogen through other neuroendocrine axes. In the lower
BMI subset of preoperative AIS girls, there is no early and
systemic skeletal evidence to suggest increased secretion
of GH/IGF-I (Figure 7) According to the LHS concept, more
sympathoactivation in the lower BMI subset is needed to
account for curve magnitudes which are similar to those
of the higher BMI subset (Figure 7). This interpretation
implies that in AIS girls, GH/IGF axis secretion and sym-
pathoactivation may have an inverse pathogenetic rela-
tionship (Figure 5, see Discussion, Medical conditions
showing inverse relation of GH/IGF axis secretion and sym-
pathoactivation).

The therapeutic implication for AIS girls is that, whatever
the BMI, consideration be given, early in curve evolution,
to decreasing -

• growth hormone and IGF synthesis by a somatostatin
analogue as used in tall children [319] (Figure 9), and/
or

• sympathetic nervous system activity by β-blockers
(as being evaluated for fractures [199]) (Figures 5 and
8).

Either medication, separately or together, might decrease
vertebral and/or rib asymmetry and limit scoliosis curve
progression, possibly by also affecting bone remodeling
[199]. This strategy ignores a possible role for sex hor-
mones in pathogenesis.

GH treatment and the Prader-Willi syndrome (PWS)
That GH may increase the risk of scoliosis progression is
currently being evaluated in PWS patients having GH
treatment for the short stature [290,292,320,321]. In the
first study of a large population of children with PWS
treated with GH, beneficial effects were found with no
adverse effects on the progression of scoliosis [321]. In the
light of the LHS concept for AIS, the latter finding suggests
that in PWS, vertebral growth asymmetries are not prima-
rily involved in the cause of its scoliosis, which may reside
in musculature and somatic nervous system.

Sex hormones
Estrogen and testosterone
A third potentially manipulatable cause of AIS pathogen-
esis in girls relates to sex hormones in pubertal growth
[17,258,311,322,323]. The relation of age at menarche to
peak height velocity in AIS girls [5,6,258] and genetic
findings [324-326] suggest a role for estrogens in suscep-
tibility and/or curve progression. In the LHS concept, estro-
gens like GH, may exaggerate vertebral growth plate
asymmetry and curve severity particularly in girls with rel-
atively lower BMIs (Figure 7). Circulating levels of estro-
gen are reported to be normal or lower, and of
testosterone raised, in AIS girls [307,327-329].

Gonadorhelin analogues
The NOTOM concept (Figure 15) [71,330-332] suggests a
medical treatment for AIS, by administering a gonadorhelin
analogue (Figure 8) to delay menarche and slow bone
growth in early AIS [333] - as practised for children with
idiopathic precocious puberty. This is not an ideal option, as
delaying the timing of normal puberty adversely affects

Neuro-osseous timing of maturation (NOTOM) concept to explain the female susceptibility to progressive AIS in relation to the somatic nervous systemFigure 15
Neuro-osseous timing of maturation (NOTOM) con-
cept to explain the female susceptibility to progres-
sive AIS in relation to the somatic nervous system. 
Height velocity (cm/year) is plotted against age in relation to 
putative postural maturation at 12 years of age in both sexes. 
The postural immaturity of girls due to their earlier growth 
spurt makes them more susceptible to curve progression 
than boys. A curve initiating factor is not identified in this 
concept. The age and sex effect of postural sway in healthy 
children needs further evaluation [71]. (Diagram modified 
from Burwell and Dangerfield [330-332]).
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bone mineralisation, and potentially could increase the
risk of osteopenia long-term.

Ballet dancers, hypoestrogenism and leptin
The increased prevalence of mild right thoracic scoliosis in
ballet dancers is associated with delayed menarche, sec-
ondary ameorrhea, anorectic behavior, osteopenia, frac-
tures and prolonged hypoestrogenism [334]. The LHS
concept for AIS pathogenesis applied to the scolioses of
ballet dancers suggests that presumed low leptin levels
[335] are associated with:

(1) increased selective hypothalamic sensitivity to leptin;

(2) increased sympathoactivation with asymmetry
expressed in the spine as scoliosis;

(3) limited energy being diverted away from the gonado-
troph-gonadal axis, possibly also the hypothalamic-pituitary-
adrenal axis [335] and GH/IGF (somatotropic) axis; and

(4) osteopenia and fractures.

Treatment for the menarcheal delay includes oral contra-
ceptive therapy [335].

Melatonin-signaling dysfunction [12-17]
Other manipulatable causes of AIS pathogenesis are sug-
gested by the melatonin-signaling dysfunction detected in
osteoblasts and chondrocytes.

(1) Osteoblasts. In vitro, MLT significantly stimulates osteob-
last proliferation, differentiation and mineralization from
controls [336], but not in osteoblasts from AIS subjects
[337,338]; this defect is suggested to play a role in the low
bone mineral density of AIS patients and contribute to
pathogenesis [338].

MLT-signaling dysfunction in AIS subjects has been
revealed mainly using bone tissue because (a) osteoblasts
respond to MLT, and (b) relative osteopenia is often
observed in patients with AIS [14,15,88,278,279]. In
some girls with AIS, a particular MLT-signaling defect is
evident [17,256,258,337]. Correction of this defect in vitro
by estradiol suggested that "the lack of estrogen that
results in late menarche may be corrected by estrogen ago-
nists having a positive effect on bone tissue remodeling"
[256]. Leboeuf et al [258] suggest estrogens as important
pharmacological targets to consider in AIS therapy
directed to patients selected on their tissue response to
MLT. This is in contradistinction to the suggestion of
delaying the adolescent growth spurt for subjects in the
lower BMI subset using a gonadorhelin analogue [330-333]
(see Sex hormones).

(2) Chondrocytes. In cartilage from controls, MLT signifi-
cantly inhibits chondrocytes proliferation in vitro but not
from AIS subjects [339]. According to Wang and col-
leagues [339], the non-responsiveness (i.e. lack of inhibi-
tion) of AIS chondrocytes to MLT might play a role in the
abnormally increased bone growth of AIS girls from dys-
function of the MLT-signaling pathway. In this connec-
tion, there is a decreasing expression of MT1 and MT2
mRNA in chondrocytes from AIS patients which may be
related to the molecular pathogenesis of AIS [340].

Research needs
Rather than a clinical trial of a somatostatin analogue and β-
blockers, we suggest that currently there is a need to evalu-
ate circulating hormones and sympathoactivation in AIS
girls by relatively higher and lower BMI subsets.

In addition to using cellular dielectric spectroscopy for AIS
diagnosis based on G-protein coupled receptor detection
[18], Moreau et al [19,20] suggest OPN and sCD44 as use-
ful markers for diagnosis and prognosis of idiopathic sco-
liosis. Subject to further study, as already mentioned,
OPN may be a potential target for therapeutic interven-
tion in AIS subjects as suggested for psoriatic patients
[341] (see Some melatonin-deficient mouse models of scoliosis
- markers of developmental stress?).

Discussion
Abnormalities revealed by higher and lower BMI subsets 
for AIS girls
The analysis of our skeletal data by relatively higher and
lower BMI subsets distinguishes two types of effect: skele-
tal sizes for age (Figures 4 and 7), and skeletal asym-
metries (Figure 6).

Skeletal sizes for age - energy priority of trunk width in girls.
The skeletal size for age effect in the girls is shown as dif-
ferences between -

(1) higher and lower BMI subsets in each of preoperative,
screened and normal girls (Figures 4 and 5) restricted
mainly to the trunk [46,117-119]; and

(2) preoperative and normal girls in higher and lower BMI
subsets (Figure 7).

The trunk width growth priority of girls is seemingly a
human characteristic. It is not explained by any of the pre-
vailing theories of AIS pathogenesis (Appendix 1, items 1-
15) each of which solely addresses pathogenesis. The
trunk width features are accommodated by the LHS mech-
anism which invokes the sympathetic nervous system and
hormones (Figure 5).
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Skeletal sizes for age - curve severity, sympathoactivation and 
hormonal stimulation
In both higher and lower BMI subsets of preoperative AIS
girls, mean Cobb angles are similar (Figures 4, and 7) with
similar mean ages and curve types. It could then be argued
that BMI is irrelevant to AIS pathogenesis. But the earlier
systemic skeletal overgrowth for age of the higher BMI sub-
set of younger preoperative girls (Figure 7), suggests that
abnormally increased hormonal stimulation ?GH/IGF
secretions, is associated with AIS pathogenesis. This led to
the hypothesis that GH/IGF secretions exaggerate the sym-
pathetic-induced vertebral and/or rib asymmetry and
increase scoliosis severity.

The lower BMI subset lacks evidence of earlier systemic
skeletal overgrowth for age (Figure 7). In this subset, we
postulate that less GH/IGF axis secretions are associated
with more sympathoactivation in an inverse relationship
(Figure 5). The combined sympathetic-hormonally-
induced effects in the lower BMI subset produce mean
Cobb angle and mean upper arm length asymmetry simi-
lar to, and mean AVR less than, the higher BMI subset
(Figure 6) [46]. This postulate of an inverse relationship
ignores other possible mechanisms that may contribute to
curve progression common to each BMI subset, including
osteopenia [88,278,279], biomechanical spinal growth
modulation [80-82], intervertebral disc degeneration
[45,342-351], and platelet calmodulin dysfunction
[21,22,107].

Medical conditions showing inverse relation of GH/IGF axis secretion 
and sympathoactivation
Several conditions in health and disorder show an inverse
relationship of GH/1GF secretions and sympathoactiva-
tion. GH/IGF (somatotropic) axis secretions are associ-
ated with central sympathetic outflow [352,353] in an
inverse relationship, though not for physical exercise
[354]. In well-nourished subjects under basal conditions,
evidence for an inverse relationship of GH secretion and
sympathoactivation includes: acromegaly [355,356], GH-
deficiency in adults [352,353,357], GH treatment of GH-
deficient adults [353], idiopathic cardiomyopathy [358],
middle-aged men with high waist-hip circumference
ratios with reduced GH peak size concentrations [359],
ageing men, with declining GH and IGF-I secretions
[360], and growth hormone transgenic mice [356].

The need for this inverse relationship under basal condi-
tions is shown by the following:

(1) In well-nourished subjects, GH stimulation of IGF
and insulin is important for the anabolic storage and
growth of adipose tissue, glycogen reserves and lean
body mass [361]. In fasting, other catabolic states and

stress, GH is lipolytic, liberating free fatty acids as an
energy source.

(2) The sympathetic nervous system and catecho-
lamines are key components of lipid mobilization in
stress [362,363].

Skeletal asymmetries and lower BMI subsets
In the lower BMI subsets skeletal asymmetries are found in:

(1) preoperative girls upper arm length asymmetry is sig-
nificantly greater than in screened and normal girls (each
p < 0.001) [46]; and

(2) right thoracic AIS, wherein Cobb angle and apical ver-
tebral rotation are each significantly associated with upper
arm length asymmetry but only in the lower BMI subset
(Figure 6) [46,120,121].

The abnormally increased upper arm length asymmetry
with right thoracic AIS is explained by the LHS concept as
resulting from the sympathetic-induced asymmetric effect
on humeral linear growth. This asymmetry is not signifi-
cantly different in magnitude between lower and higher
BMI subsets. It is limited to proximal upper limbs (bra-
chium), putatively to ribs and vertebrae, all putatively
influenced by hormonal effects ?GH/IGF.

Upper arm length asymmetry and the higher BMI subset of right 
thoracic AIS
In the higher BMI subset of girls with right thoracic AIS,
upper arm length asymmetry decreased significantly with
age. The LHS concept explains this resolution as sympa-
thetic- and hormonally-induced asynchronous upper arm
growth affecting either:

(1) younger more than older adolescent girls; or

(2) all girls transiently, with the asymmetry starting in late
juvenility with vertebral and/or rib length asymmetry that
triggers the scoliosis.

Any associated vertebral osteopenia, possibly sympa-
thetic- and/or hormonally-induced, may then predispose
to curve progression. Any transience of the upper arm
length asymmetry may result from the neuroprotective
action [132] of rising circulating leptin levels during the
early stages of puberty [206-208]. This could reduce the
breadth of hypothalamic asymmetric dysfunction, which
may not occur in the lower BMI subset with presumptively
lower circulating levels of leptin producing less neuropro-
tection with a tendency to more asymmetry.
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Explanations for undisputed facts about AIS
Theories about the pathogenesis of AIS have to explain
several undisputed facts [91,110,364].

(1) Dependence of the deformity upon growth and growth rate.
The relation of skeletal growth velocity to curve progres-
sion in AIS is established [4,5,137,365,366], but its mech-
anism of action is unclear - causative, conditional,
amplifying, or coincidental [91]. In the escalator concept,
the dependence of AIS progression on growth is explained
not by velocity of growth, but by rapid spinal lengthening
and trunk enlargement beyond the capacity of the pos-
tural mechanisms to control the deformity [24,51,111].

(2) Predilection for females. Two putative mechanisms
explain the greater susceptibility of girls than boys to pro-
gressive AIS:

a) In the autonomic nervous system, the increased sen-
sitivity (up-regulation) of the hypothalamus (sympa-
thetic NS and somatotropic axis) to leptin by mutations
with its asymmetries contributing to AIS, greater in
females than in males [25], is attributed to: i) dimin-
ished sensitivity (down-regulation, i.e. resistance) to leptin
of the female hypothalamus established by mutations
in hominin evolution; and ii) central leptin resistance in
the somatotropic axis of normal juvenile girls [50]
which, through mutations causing central leptin sensi-
tivity, may predispose some girls to AIS.

b) In the somatic nervous system, girls may enter their
adolescent skeletal growth spurt in postural immatu-
rity, compared with boys who may enter their adoles-
cent growth spurt in postural maturity so they are
protected from developing a scoliosis curve (Figure
15) [330-332].

(3) Involvement of members in involved families. This is deter-
mined by genetic factors operating in the autonomic and
somatic nervous systems [56,77-79] and other mecha-
nisms.

(4) Curve types and laterality patterns. Biomechanical fac-
tors involving ribs [59-63] and/or vertebrae [64,65,91-93]
and spinal cord [64,65,92,93], acting during growth may
localize AIS to the thoracic spine and cause the sagittal spi-
nal shape alterations [83-90]. The non-random laterality
of thoracic AIS curves has been explained by several fac-
tors including handedness, aorta, lungs, diaphragm, pre-
existing lateral curve, axial rotation and embryology [367-
371]. We suggest that the laterality and site of thoracic,
thoracolumbar and lumbar curves is determined, in part,
by the location of the putative abnormalities of the LHS-
driven mechanism in the hypothalamus and sympathetic
nervous system.

(5) Varied progression patterns. These are explained by the
interaction of autonomic and somatic nervous systems in
the spine and trunk compounded by any relative osteope-
nia of vertebrae [88,278,279], biomechanical spinal
growth modulation [80-82], accelerated disc degenera-
tion [45,342-351], and platelet calmodulin dysfunction
[21,22,107]. Circulating leptin levels in AIS girls did not
correlate significantly with Cobb angle [163,164]. This
finding does not preclude circulating leptin levels acting
with increased hypothalamic sensitivity to leptin to con-
tribute to the magnitude of the hypothalamic asymmetry,
and from that to the sympathetic nervous system-induced
skeletal asymmetry(ies).

(6) 3-D rotatory deformity of the spine. In thoracic AIS, Dav-
ids et al [372] found that the most valuable single MRI
indicator for abnormal central nervous system findings
was the absence of an apical segment lordosis. This and
other evidence [91,373] suggests that in thoracic AIS, api-
cal lordosis [83-87] is determined by processes either
intrinsic to the spine ("primary", i.e. relative anterior spi-
nal overgrowth = RASO [51,76]), and/or extrinsically by
the sympathetic nervous system acting on vertebrae in 1-
3D - left-right, front-back, and/or torsionally. Recent evi-
dence shows that while right thoracic AIS has a reduced
thoracic kyphosis (T5-12), increased pelvic incidence and
sacral slope consistent with the RASO theory of pathogen-
esis [374], left thoracic AIS [374] has a normal thoracic
kyphosis and pelvic incidence, not consistent with the
RASO theory. This may signify that left thoracic AIS has a
pathogenesis different from right thoracic AIS [374], pos-
sibly involving reduced white matter density of the central
nervous system [114,115]. We suggest that right and left
thoracic AIS in girls may be driven separately by the two
nervous system components of the double neuro-osseous
theory: right thoracic AIS mainly by the autonomic/sym-
pathetic nervous system and left thoracic AIS, mainly by
the somatic nervous system.

(7) Vertebral bodies grow faster than the posterior vertebral ele-
ments [64,65,83-90]. This is explained in part by a greater
enhancing effect of the sympathetic nervous system on
vertebral bodies and their growth plates than on posterior
vertebral growth leading to asymmetry in the sagittal
plane and the relative anterior spinal overgrowth (RASO)
of progressive AIS.

(8) AIS is exclusive to humans. We suggest that AIS in girls
is a consequence of abnormalities occurring in the puta-
tive physiological LHS-driven (Figure 5) and escalator (Fig-
ure 2) mechanisms of the theory, both of which are unique
to humans [24,25,50] and emanating from these and
other features of their evolution [298-303].
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Testing the Theory
The double neuro-osseous theory (Figure 1) cannot be
tested as a singularity, but many of its components,
framed as hypotheses, can be tested by refutation within
ethical restraints. In the multidisciplinary approach
needed, some problems to be addressed include the fol-
lowing.

(1) Genetic factors operating in somatic and autonomic
nervous systems may be investigated in members of fam-
ilies with AIS girls, by genome-wide association studies in
relation to postural control data [94] and objective evi-
dence of autonomic dysfunction respectively (see below
item (12)).

(2) Studies of brain imaging, function and asymmetries of
AIS subjects compared with normals during adolescence
need to be extended [113-115,375]. A basic question to be
addressed is: Is the spinal and trunk deformity of AIS in
girls the solitary expression in the spine and trunk of a
brain that is the seat of several abnormalities of symmetry
control?

(3) By relatively higher and lower BMI subsets, confirma-
tion is needed for energy priority of trunk width size for age
in normal and AIS girls (Figures 4 and 5), skeletal asym-
metry growth patterns in girls with thoracic AIS (Figure 6),
and skeletal overgrowth patterns for age in preoperative/
normal girls (Figure 7). In normal babies, evaluate skull
size and trunk width by relatively higher and lower BMI at
each of birth, one and two years of age [376,377].

(4) By relatively higher and lower BMI subsets confirma-
tion is needed of evidence suggesting central leptin resist-
ance in the somatotropic (GH/IGF) axis of normal juvenile
girls [50] which, through mutations causing central leptin
sensitivity, may predispose some girls to AIS. The possibil-
ity of other mechanisms explaining the findings needs to
be evaluated by studies of leptin, soluble leptin receptor
and free leptin index [378,379].

(5) Since bilateral skeletal asymmetry in humans and
skeletal overgrowth for age may be the key factors for the
development of AIS [76], etiopathogenetic research needs
to focus on skeletal length asymmetries of normal and AIS
girls (Figure 1), and their relation to each of skeletal size
for age, and osteopenia. The evolution of upper arm
length asymmetry in girls with right thoracic AIS [135]
and normal right thoracic trunk asymmetry [123-125]
needs to be established in longitudinal studies of higher
and lower BMI subsets.

(6) In leptin-deficient ob/ob mice, evaluate whether verte-
bral growth plates respond to absent leptin signals in a

fundamentally different manner from limb bone growth
plates [179,180].

(7) The energy sources of growth plates (GPs) in the trunk
and limbs of humans and quadrupeds need studying
[179,180,380]. Are there metabolic differences in GPs
related to the anthropometric findings for girls [47-49],
and in trunk width GPs of human babies compared with
nonhuman primate babies? (see above, Evolutionary Ori-
gins).

(8) Evaluation of circulating hormones - leptin
[12,163,164,206,207,381], high affinity leptin binding
protein (soluble leptin receptor) [378,379], growth hor-
mone [307,308], IGF-I and binding proteins [5,379], and
estrogen levels [307,327-329] - in AIS girls by relatively
higher and lower BMI subsets, with a view ultimately to a
possible clinical trial of medical treatment by a somatosta-
tin analogue [319] and β-blockers [199]. Cross-sectional
[163,164] and longitudinal [12,381] studies are needed.

(8) Evaluation of receptors to hormones in growth plates
and intervertebral discs including growth hormone, IGF-I,
leptin, estrogens and melatonin by relatively higher and
lower BMI subsets [180,220,222,223,382-384].

(10) In AIS spinal curves, correlation studies between MRI
and histomorphology of spinal growth plates obtained at
surgery [43-45] need extending.

(11) Sensory and sympathetic innervation of vertebral
endplates in patients with idiopathic scoliosis needs more
evaluation [385]. In this connection, sympathectomy as a
possible prophylactic procedure for AIS in girls, and as a
test of the LHS concept, needs consideration.

(12) Search for extra-spinal skeletal length asymmetries in
AIS girls in other bilateral bones - sacral alae [153-155],
clavicles and scapulae (Figure 1).

(13) Assessment of autonomic nervous system function in
AIS girls [25,211,286,287,352,353,358,363,386,387]. In
lower BMI subset AIS girls, is sympathoactivation stronger
without any increase in GH/IGF secretion, and vice versa in
higher BMI subset AIS girls?

(14) Estimates of body fat [386,388] including brown adi-
pose tissue [205,299,389-395], BMI [161-171] and rela-
tion of the latter to calcium intake [396] and genetics
[172-175] in AIS girls.

(15) The suggestion that the putative hypothalamic dys-
function of AIS in girls is enhanced by raised circulating
leptin levels associated with fat accumulation of female
puberty suggests that, where appropriate, lowering circu-
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lating leptin levels from BMI reduction may diminish sco-
liosis curve progression in some girls. In this connection,
besides dieting, increasing calcium intake [396] and
manipulating the function of brown adipose tissue
[299,389-395] need consideration.

(16) As in the Rett syndrome [286,287] skin sympathetic
responses need studying in AIS girls, separately for higher
and lower BMIs, and subjects with the Prader-Willi syn-
drome, with the recording electrodes placed on both sides
of the trunk and at other sites.

(17) The hypothalamus, neuropharmacology and neu-
ropsychology, all need evaluation by neuroscientists in
relation to the LHS concept of the double neuro-osseous theory
particularly of a) negative regulators of leptin transduc-
tion, including SOCS-3 [243,244,250], PTP-1B [240,252],
and OB-RGRP [247,248,253], and b) the positive regula-
tor SH2B1 [232]

(18) Whether SOCS-3, PTP-1B and SH2B1 are significant
contributors to AIS pathogenesis has to start with an
examination of genetic association between phenotype
and variation at each of these genes.

(19) According to Mattson [282], interventions that acti-
vate hormetic signaling pathways in neurons is a promis-
ing new approach for the prevention and treatment of a
range of neurological disorders. Hormesis and the dose-
response of leptin/bone growth in AIS girls [283-285]
need more study [36] (Calabrese EJ, personal communi-
cation].

(20) The studies of girls with right thoracic AIS (Figure 6)
need evaluating in girls with left thoracic and other types
of AIS, and include hormonal and sympathoactivation
comparisons.

(21) The above studies in girls, AIS and normals, need
similar evaluation in boys [47-50,117-122] to establish
gender similarities and differences [397]. Do adolescent
boys with societally-increased fat accumulation have a
raised prevalence of progressive AIS?

(22) Infantile idiopathic scoliosis (IIS, early onset scoliosis)
occurs at the younger period of life when the human body
is growing rapidly and both boys and girls accumulate fat
transiently. Curve resolution/progression in boys and
girls with IIS is established in relation to rib-vertebra
angles [398,399]. The natural history of IIS, resolving and
progressive, needs further study in relation to other varia-
bles including trunk widths, adipose tissue, and epidemi-
ological findings that may be explained by the functions
of white and brown adipose tissue (WAT and BAT). The
variables are:

• the funnel-shaped upper chest in progressive IIS
[400];

• biacromial and biiliac widths are narrow relative to sub-
ischial height (SIH) in older IIS boys and girls (Figure
16), while SIH is not abnormal [401,402].

• in infants developing IIS under 6 months, there was
an excess of curve onset in the two winter quarters and
of premature low birth weight males [403];

• the declining prevalence of IIS [404] in lower socio-
economic groups in the UK [403] in relation to a) the
interscapular pad of BAT, its sympathetic innervation
and non-shivering thermogenesis
[389,391,395,401,405,406], and b) the central heat-
ing of homes over the period of study;

• the loss of subcutaneous fat in subjects with malig-
nant progressive IIS about 4-6 years of age [407]; and

• in normal boys and girls, the dramatic decline from
chubbimess to a comparably lean condition by 5 years
of age with greater interscapular BAT in premature
than mature infants [299-302].

Girls with infantile idiopathic scoliosis (IIS) and normal girlsFigure 16
Girls with infantile idiopathic scoliosis (IIS) and nor-
mal girls. Biacromial width plotted against 5 cm ranges of 
sub-ischial height (SIH = standing height minus sitting height). 
The shoulders of the girls with IIS are significantly narrower 
relative to the normal girls at most of the SIH ranges above 
55 cm (mixed longitudinal data by two observers (RGB & 
PHD) from subjects in Birmingham, Nottingham and Liver-
pool during 1972-76; n = 91, means ± 1 standard error, sta-
tistical significance levels for p values from t-test * = 1-5%, ** 
= 0.1-1%, *** p < 0.001, NS = not significant) (Diagram 
redrawn from Dangerfield et al [402]).
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Overall, these findings suggest the hypothesis that white
and brown adipose tissue, leptin, hypothalamus and the
sympathetic nervous system may, collectively, play a role
in the pathogenesis of IIS.

(23) In addition to the historical reductionist approach, a
systems-biology approach [408] is needed to evaluate the
pathogenesis of AIS, as for obesity [301]. This approach
involves multidisciplinary research leading to new theo-
ries and new experiments.

Conclusion
(1) The double neuro-osseous theory for AIS pathogenesis in
girls postulates developmental disharmony between auto-
nomic and somatic nervous systems expressed in the
spine and trunk and exaggerated by hormones producing
systemic skeletal overgrowth (preoperative girls) (Figures
1 and 7).

(2) The theory predicates AIS pathogenesis in girls on dys-
function in one or both of two putative normal mecha-
nisms involved in trunk growth, each acquired in
evolution and unique to humans.

(3) The autonomic component of the double neuro-osseous
theory for AIS pathogenesis in girls usually involves selec-
tively increased sensitivity of the hypothalamus to the circu-
lating adipokine leptin, with asymmetry routed bilaterally
via the sympathetic nervous system to the growing axial
skeleton where it initiates the scoliosis deformity. We
speculate that increasing levels of circulating leptin [12]
with the fat accumulation of adolescent girls [299,301],
enhance the increased hypothalamic sensitivity to leptin.

(4) In the autonomic nervous system, the putative dys-
function - selectively increased hypothalamic sensitivity
to leptin as up-regulation from mutation(s), may be regu-
lated by one or more of five possible molecular mechanisms. The
abnormal hypothalamic asymmetry is attributed to
hormesis [36,124,282-284].

(5) In the somatic nervous system, dysfunction of a putative
postural escalator mechanism involving the central body
schema fails to control, or may induce the spinal deformity
of AIS girls (escalator concept) (Figures 1 and 3).

(6) The developmental disharmony in the trunk is com-
pounded by any relative osteopenia of vertebrae, biome-
chanical spinal growth modulation, accelerated disc
degeneration, and platelet calmodulin dysfunction.

(7) Biomechanical factors acting during growth may local-
ize thoracic AIS and contribute to its sagittal spinal shape
alterations [83-90]; these include ribs [59-63] and/or ver-
tebrae [64,65,91-93], and spinal cord [64,65].

(8) The hypothalamic dysfunction of the double neuro-
osseous theory is expressed as:

• Sympathoactivation expressed asymmetrically in
vertebral plates - left-right, front-back and/or torsion-
ally - and in some paired bones.

• Increased hypothalamic sensitivity to circulating lep-
tin (up-regulation) in some younger AIS girls with
larger curves also involves the GH/IGF-I axis [222]
(Figures 5, 7 and 9).

• Hormonal effects cause exaggeration of the sympa-
thetic-induced vertebral/rib asymmetry(ies) contrib-
uting to progression of larger (preoperative) AIS curves
in girls.

• Curve progression is postulated to involve an inverse
relation of sympathoactivation and GH/IGF secretions
(Figure 5). An inverse relation of these functions is
found in several medical conditions.

(9) Progress towards these interpretations started in 2008,
when theories were summarized which led us to propose
a novel neuro-osseous escalator concept for AIS pathogenesis
in girls affecting the somatic nervous system (Figures 1, 2
and 3) [51,111].

(10) Subsequently, anthropometric data from three
groups of adolescent girls - preoperative AIS, screened for
scoliosis and normals, were analysed by an original
method for scoliosis of comparing data between subsets
of relatively higher and lower body mass index (BMI).

(11) New findings revealed: energy priority of trunk width
growth (Figures 4and 5) [46,117-119], skeletal asymmetries
(Figure 6) [46,120,121], and skeletal overgrowth patterns for
age (Figure 7) [29,122]. The contrasting skeletal features
were not explained by any of the theories of AIS pathogen-
esis surveyed [51] including the escalator concept [51,111].

(12) The autonomic nervous system component of the
theory (LHS concept) [25] draws evidence from several
fields including:

• thoracospinal concept for the pathogenesis of right
thoracic AIS in girls [59-63];

• new neuroskeletal biology relating the sympathetic
nervous system to bone formation/resorption and bone
growth [187-198];

• white adipose tissue, the adiposity hormone leptin
secreted by adipose tissue which functions as a sentinel
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of energy balance and long-term adiposity to the
hypothalamus; and

• central leptin resistance in obesity and possibly in
healthy females.

(13) A new hypothesis for AIS pathogenesis in girls is for-
mulated incorporating white adipose tissue, energy
homeostasis (bioenergetics), the hypothalamus and sym-
pathetic nervous system, in a disorder presenting as asym-
metric abnormalities of trunk growth and, as suspected in
preoperative girls, with systemic skeletal overgrowth.

(14) The endocrine and therapeutic implications of the
LHS concept are discussed. An immediate need is to evalu-
ate circulating hormone levels in AIS girls by relatively
higher and lower BMI subsets; and later a possible clinical
trial of medical treatment by a somatostatin analogue and
β-blockers.

(15) Some methods for testing the theory's hypotheses are
outlined.

(16) The putative hypothalamic dysfunction is thought to
have an evolutionary origin in hominid fat deposition
which in more than 3 million years, may have provided
energy needed sequentially for each of:

• trunk width growth at the pelvis (mainly sacral alae),
(Figures 5 and 12);

• trunk width growth of upper thorax and shoulders
(Figures 10 and 11); and

• brain growth with

• pelvic depth increase (Figure 12).

We postulate that white adipose tissue still provides for
skeletal growth processes in fetal and post-natal normal
human development [299-302].

(17) In some normal juvenile girls, but not boys, the
hypothalamus may function with central (hypothalamic)
leptin resistance of the somatotropic (GH/IGF) axis to prevent
too much energy being invested in female skeletal growth,
thereby conserving energy for reproductive development.
AIS is viewed as expressing central leptin sensitivity of
hypothalamic sympathetic function and, in some younger
preoperative girls, of the somatotropic neuroendocrine
axis (Figure 7).

(18) A new interpretation involving the hypothalamus for
some melatonin-deficient mouse models of scoliosis is
presented.

(19) Evidence for infantile idiopathic scoliosis is outlined
suggesting a need to evaluate the hypothesis that white
and brown adipose tissue, leptin, hypothalamus and the
sympathetic nervous system may play a role in its patho-
genesis.
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Appendix 1
Some theories of AIS pathogenesis [51]

(1) Genetics [75-79].

(2) Biomechanical spinal growth modulation [80-82].

(3) Relative anterior spinal overgrowth (RASO) [83-90].

(4) Dorsal shear forces and axial rotation instability
[75,91].

(5) Asynchronous spinal neuro-osseous growth
[64,65,92,93].

(6) Postural abnormalities and hind brain dysfunction
[69,94-103].

(7) Motor control problem [104].

(8) Body-spatial orientation concept [69].

(9) Neurodevelopmental concept [105,106].

(10) Thoracospinal concept [59-63].

(11) Systemic melatonin deficiency [7-9].

(12) Systemic melatonin-signaling pathway dysfunction
[14-20].

(13) Systemic platelet calmodulin dysfunction
[21,22,107].

(14) Symmetry control dysfunction - developmental
instability [108-110].
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(15) Collective and escalator models [51,111].

(16) Leptin-hypothalamic-sympathetic nervous system
(LHS) dysfunction with disharmony between somatic and
autonomic nervous systems in the spine and trunk [24-
29].
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